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ABSTRACT. We present determinacy bounds on monetary policy in three models of inatten-

tiveness - sticky information, imperfect common knowledge, and arbitrary finite inatten-

tiveness. We find that these bounds are identical across these models as they all share a

common vertical long run Phillips curve. The resulting bounds are more conservative than

in the standard Calvo sticky price New Keynesian model. Specifically, the Taylor principle

is now necessary directly - no amount of output targeting can substitute for the monetary

authority’s concern for inflation. These determinacy bounds are obtained by appealing

to frequency domain and forecasting/prediction innovation techniques that themselves

provide novel interpretations of the Phillips curves.
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1. INTRODUCTION

We address the question of bounds on monetary policy to deliver a unique equilibrium

when the long run Phillips curve is vertical. We find that when this long run condition

holds, only the coefficients in the Taylor rule itself with respect to inflation matter for

determinacy. We show this specifically in models of inattentiveness that fulfill the natural

rate hypothesis and contrast the results to the canonical sticky price model. If the long run

Phillips curve is vertical, no amount of output gap targeting, forward or backward-looking
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2 INATTENTIVENESS AND THE TAYLOR PRINCIPLE

inflation targeting can substitute for a more than one-for-one response to current inflation

directly. That is, the Taylor principle is necessary in an absolute sense.

Our central contribution is to the understanding of the limits on monetary policy to

ensure a unique, stationary or determinant equilibrium following Blanchard and Kahn

(1980). In particular we cast our attention to models with information rigidities and

add the sticky information model of Mankiw and Reis (2002), the imperfect common

knowledge model of Nimark (2008) and our general model of finite attentiveness, specified

only by imposing the natural rate hypothesis holding at a finite horizon, to the list of

models analyzed via restrictions on coefficients in monetary policy’s Taylor (1993) rule

following Clarida, Galí, and Gertler (2000) and Woodford (2001b) for the sticky price

model.1 We find that a vertical long run Phillips curve brings a unified perspective across

models with imperfect information on determinacy and demands that the more than

one-for-one response of the nominal interest rate in response to inflation be in response

to current inflation directly. This calls assertions such as Woodford (2003, pp. 254–255)

“... indeed, a large enough [response to] either [the output gap or inflation] suffices to

guarantee determinacy” into question. In the absence of a trade off between inflation and

the output gap in the long run - a vertical Phillips curve - we show that no degree of output

gap targeting can substitute for a reaction to inflation. This has a very similar flavor to

Davig and Leeper (2007) - in their model of regime switching monetary policy, it is the

long run characteristics that are decisive for determinacy, their long run Taylor principle -

we argue the same logic applies to the Phillips curve, its long run slope being the decisive

characteristic. We demonstrate the long run verticality of our three Phillips curves and

compare to the dynamic trade off inherent in the Calvo model. The lack of a dynamic

structure in inflation in the long run in the three inattentive Phillips curves (it is some

imperfect forecast or prediction of inflation in inattentive Phillips curves, whereas the

sticky price Phillips curve involve current and future expected inflation) precludes past or

future expected inflation targeting to act as substitute for monetary policy’s reaction to

current inflation. That is, the Taylor principle is necessary in a much stricter sense than

1See Bullard and Mitra (2002) and Lubik and Marzo (2007) for compendia of determinacy results in

sticky price models. Woodford (2003) and Galí (2008) provide textbook and Clarida, Galí, and Gertler

(1999) and Christiano, Trabandt, and Walentin (2011) survey article treatments. Loisel (2022) provides

determinacy bounds for a class of models with a wide of a lead-lag dependence. McCallum (1981) is an early

reference on determinacy via an interest rate rule. See Benhabib, Schmitt-Grohé, and Uribe (2001) and

Cochrane (2011) for critical views on (local) determinacy.
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INATTENTIVENESS AND THE TAYLOR PRINCIPLE 3

sticky price analyses would otherwise lead one to conclude, closing a gap in the literature

by deriving the determinacy bounds in models with vertical long run Phillips curves.

In the sticky information model Mankiw and Reis (2002) assume that firms update

their information in an infrequent manner, i.e. firms adjust their prices delayed but

optimally in response to their information sets. Once information is updated, it represents

the entire state of the economy. Mankiw and Reis (2007), Branch (2007) or Coibion and

Gorodnichenko (2015a) and subsequent literature support the sticky information model

as it outperforms the standard New Keynesian model and improves the dynamics of

macroeconomic responses to monetary policy, precluding disinflationary expansions and

attenuated responses to anticipated shocks and persistent zero lower bound episodes.2

Central to the different role of monetary policy is the sticky information model’s vertical

long-run Phillips curve, even out of equilibrium, whereas the sticky-price model imposes

a systematic relationship between inflation and output, stable even in the long run.3

Imperfect common knowledge among firms posits another source of price inertia. Con-

trary to the sticky information model suppliers in a common knowledge framework choose

their prices based on their noisy observations. Woodford (2001a) demonstrates that both

unanticipated and anticipated monetary shocks have real effects in the Lucas (1973)

island model as higher order expectations - the expectations of others’ expectations -

persist in the absence of public information.4 Adam (2007) analyzes optimal monetary

policy in a model of nominal demand with imperfect common knowledge and flexible

prices and Nimark (2008) combines Calvo price setting with noisy information and derives

2Further support comes from empirical evidence on the formation of macroeconomic expectations. Coibion

and Gorodnichenko (2015a), Mertens and Nason (2020), Nason and Smith (2021), amongst others, show

that stickiness in survey forecasts crucially depends on the inflation process. Andrade and Le Bihan (2013),

Roth and Wohlfart (2020), Reis (2020), Cornand and Hubert (2022), Carroll, Crawley, Slacalek, Tokuoka,

and White (2020), Link, Peichl, Roth, and Wohlfart (2023) document systematic biases in expectations and

disagreement in inflation expectations among various types of agents tracing back to information rigidity.

Chou, Easaw, and Minford (2023) estimate different models with incomplete information structures and

show that Mankiw and Reis’s (2002) sticky information generates a persistent and delayed response of

inflation and output gap to a monetary policy shock empirically and An, Abo-Zaid, and Sheng (2023) estimate

a sticky information model with endogenous inattention using US survey data and show that monetary

policy’s impact on the economy is amplified when both firms and households agents are inattentive.
3See, e.g., Woodford (2003, p. 254) or Galí (2008, p. 78).
4More recently, Acharya, Benhabib, and Huo (2021) and Huo and Takayama (2022) show that changes in

agents’ beliefs due to information frictions lead to persistent aggregate fluctuations.
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an imperfect common knowledge Phillips curve. Nimark’s (2008) analysis in a general

equilibrium model with New Keynesian IS demand and an interest rate rule is silent

about determinacy and this is where our analysis picks up the standard.5 This model is

a poignant alternative specifically as Angeletos and Lian (2018) demonstrate that this

imperfect common knowledge approach rectifies the resolution of paradoxical prediction

of New Keynesian models with Mankiw and Reis’s (2002) sticky information by Chung,

Herbst, and Kiley (2015) and Kiley (2016) with the micro data on price stickiness.6

Our analysis contributes to the literature on monetary policy in economies with limited

information7 that can provide markedly different policy recommendations than in full

information settings like the canonical sticky price framework. Beginning with Ball,

Mankiw, and Reis (2005) who consider information stickiness in price setting which

leads monetary policy to favor price level over inflation targeting. Angeletos, Iovino, and

La’O (2016) show that incomplete information leads to nominal rigidities which can be

neutralized by the conduct of monetary policy in the sticky price framework. Paciello

and Wiederholt (2014) study optimal policy when firms are rationally inattentive to

the state of the economy. Angeletos and La’O (2020) extend the “leaning against the

wind" policy to firms’ information-dependent actions. Bernstein and Kamdar (2023) and

Iovino, La’O, and Mascarenhas (2022) examine the effects of informationally constrained

policy makers. Ou, Zhang, and Zhang (2021) find that combining the Calvo friction with

imperfect common knowledge leads to two separate price dispersion welfare channels

associated with each of these friction individually. We maintain the standard concept

of determinacy à la Blanchard and Kahn (1980) and while this is not the only concept

5Lubik, Matthes, and Mertens (2023) analyze the dynamic effects of sunspot shocks with an imperfectly

informed central bank and foreshadow our result that the Taylor principle holds in a strict sense and

responses to projections of variables cannot substitute for responses directly to realized inflation.
6Angeletos and Huo (2021) further address the potential endogeneity of information in dynamic beauty

contests encapsulated in imperfect common knowledge among firms and information theoretic assumptions

that relate to Nimark’s (2008) assumption of common knowledge of rationality. Indeed they support their

dynamic orthogonalization of innovation information by appealing to its nesting of Mankiw and Reis’s

(2002) sticky information as a special case. This close conceptual relationship is echoed by Chahrour and

Jurado (2018) who provide an equivalence between news and noise in agents’ beliefs and Coibion and

Gorodnichenko (2015b) who find that sticky-information and noisy-information models both point to the

same relationship between ex post mean forecast errors and ex ante mean forecast revisions.
7See Hellwig, Kohls, and Veldkamp (2012) for a unified framework.
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uniqueness,8 our analysis provides the classical Taylor principle determinacy bounds on

monetary policy thus far missing for economies with limited information but is silent as

to these alternate perspectives on equilibria.

We also contribute technically to linear DSGE equilibrium principles in the complex

analysis and frequency domain following Futia (1981), Whiteman (1983), and Kasa (2000)

to address information frictions.9 Loisel (2022) addresses restrictions on monetary policy

via complex analysis also using Roché’s theorem, yet remains in the time domain. Tan and

Walker (2015), Tan (2021), and Al-Sadoon (2020) on the other hand use frequency domain

approaches to solve linear rational expectations models in the vein of Whiteman (1983).10

Finally, Han, Tan, and Wu (2022) and Jurado (2023) use frequency domain techniques

such as Wiener-Hopf prediction and Wiener-Kolmogorov filter to solve models of imperfect

information yet the former focuses on the numerical solution and the latter on rational

inattention - neither addresses the bounds on monetary policy for determinacy under

imperfect information. Specifically, we derive recursive representations of the Phillips

curves, in the frequency domain for sticky information and in a higher order expectations

operator for imperfect common knowledge, enabling both novel interpretations and the

analysis of determinacy in both models. These recursions allow us to separate the long run

dynamic restrictions from sequences of prediction/forecast errors responsible for the rich

shorter run dynamics, exactly analogously to our generic model of finite inattentiveness.

These recursive representations are a first in the literature and allows us to derive our

analytic results in a forward-looking environment with a standard New Keynesian IS

curve specifying the demand side.

8For example, appealing to coordination concepts of uniqueness, Angeletos and Lian (2023) reformulate

the New Keynesian model as a dynamic game under imperfect information and Acharya, Benhabib, and

Huo (2021) examine sentiment equilibria in beauty game framework. Angeletos and Huo (2021) spells

out specific assumptions that bypass possible endogeneities of information consistent with the exogenous

Poisson arrival in sticky information and Nimark’s (2008) assumption of common knowledge of rationality.
9Empirically, Watson (1993) and Diebold, Ohanian, and Berkowitz (1998) decompose macroeconomic

time series data into different frequencies to identify business cycle drivers, King and Rebelo (1993) focuses

on low, Beaudry, Galizia, and Portier (2020) on medium-term frequencies. Angeletos, Collard, and Dellas

(2020) maps shocks from the frequency domain to address the business cycle, and Rünstler and Vlekke

(2018) and Strohsal, Proaño, and Wolters (2019) extend to financial cycles.
10Al-Sadoon’s (2020) focus is on maintaining continuity in parameters as a fundamental empirical

approach. Tan and Walker (2015) and Tan (2021) focus on numerical solution and estimation and like

Al-Sadoon (2018) and Onatski (2006) provide determinacy results for linear models with finite lagged

expectations precluding their application to the sticky information model.
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This paper is structured as follows. In section 2 we review the determinacy bounds on

our baseline Taylor rule in the sticky price model and its frictionless counterpart. Next,

section 3 introduces the three alternative supply curves we examine here - we relate them

to the New Keynesian Phillips curve and the long run neutrality encapsulated in the

natural rate hypothesis. In sections 4, 5, and 6 we derive the determinacy restrictions on

the three alternative supply curves, which coincide with the determinacy bounds in the

frictionless model we began with. We examine the robustness of our findings in section 7

by analyzing the implications of a monetary policy rule extended to arbitrary targeting

horizons. Lastly we conclude.

2. EXISTENCE AND UNIQUENESS: FRICTIONLESS AND STICKY PRICES

We fix ideas by first reviewing the conditions for determinacy in two basic models from

the literature, a frictionless model of Cochrane (2011) and the textbook New Keynesian

model, Woodford (2003) or Galí (2008). When there is separation between the nominal

and real sides of the economy as in the simplest of models used by Cochrane (2011) in

his exposition on determinacy in New Keynesian analysis, a loglinear Fisher equation

which is the standard New Keynesian dynamic IS equation with an exogenous real side

of the economy, output gap targeting is by constuction irrelevant and the Taylor principle

holds in a strict sense. This is no longer the case with the New Keynesian Phillips curve

which allows monetary policy to substitute a concern for the output gap for its concern

for inflation. The remainder of the paper will argue that the former results hold more

generally in models of inattentiveness and that the latter is dubious as it rests on the New

Keynesian Phillips curve failing to satisfy the natural rate hypothesis due to it remaining

non vertical even in the long run.

We will address determinacy initially in our analysis with the following Taylor rule

Rt =φππt +φy yt (1)

where Rt is the nominal interest rate, πt inflation, and yt is the output gap. We will

assume nonnegative coefficients, φπ,φy ≥ 0, unless otherwise noted.

We begin with Cochrane’s (2011) simplest model to address determinacy, also used by

Davig and Leeper (2007) and Lubik, Matthes, and Mertens (2023), the Fisher equation in

a frictionless setting. The loglinear Fisher equation is

Rt = rr t +E tπt+1 (2)
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INATTENTIVENESS AND THE TAYLOR PRINCIPLE 7

where Rt is the nominal interest rate, rr t the real rate, and πt inflation. In the frictionless

setting, the output gap is closed

yt = 0 (3)

and the real rate is determined exogenously, e.g., by the expected growth rate of productiv-

ity. Thus, without loss of generality, we set it to zero. Note that we get the same condition,

Rt = rr t +E tπt+1 with a standard dynamic IS equation in our frictionless setting with (3)

yt = E t yt+1 −σRt +σE tπt+1 (4)

Theorem 1 (Frictionless Determinacy). The frictionless model, given by (4), (3), with the

Taylor rule (1), has a unique, stable equilibrium if and only if

φπ > 1 (5)

Proof. Combining (1), (4), and (3) gives

φππt = E tπt+1 (6)

and solving forward, Blanchard (1979)

πt = lim
j→∞

1

φ
j
π

E tπt+ j (7)

delivers a unique, bounded solution for πt if and only if 1<φπ. □

Hence, the nominal interest rate must move more than one for one with inflation for the

equilibrium to be determinate, giving us the celebrated Taylor principle.11 Importantly,

11 Notice that we abstract from exogenous shocks - this is without loss of generality, see e.g., Theorem

3.15 of Elaydi (2005) - the solution to a system of difference equations can be split into a particular and a

homogenous solution and only the homogenous solution of the system of difference equations is relevant for

the examination of determinacy. Following Taylor (1986), the bounded solution will be unique for any given

bounded exogenous sequence of shocks if and only if the homogenous solution is uniquely determined by

the boundedness conditions on the endogenous variables. Analogous conclusions can be found in Woodford

(2003, pp. 252, & 636) and this follows the analysis of Lubik and Marzo (2007) for the sticky price model

that follows. To see this consider the frictionless setup of Davig and Leeper (2007) and let rr t = ρrr t−1 +ϵt

with |ρ| < 1 and ϵt is iid mean zero. The Fisher equation (2) and (1) imply φππt = E tπt+1 + rr t. Solving

forward gives and solving forward, Blanchard (1979)

πt = lim
j→∞

1

φ
j
π

E tπt+ j +
∞∑
j=0

1

φ
j+1
π

E trr t+ j = lim
j→∞

1

φ
j
π

E tπt+ j + 1
φπ

∞∑
j=0

(
ρ

φπ

) j
rr t (8)

which again delivers a unique, bounded solution for πt if and only if 1<φπ. Now with πt = 1
φπ−ρ vt instead

of πt = 0 in theorem 1.
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8 INATTENTIVENESS AND THE TAYLOR PRINCIPLE

the degree of output gap targeting φy is irrelevant for determinacy, as the output gap

is always zero in the frictionless model and offers no leverage in fulfilling the Taylor

principle.

The determinacy situation is dramatically different under the standard linear New Key-

nesian sticky-price Phillips curve (NKPC) with Calvo (1983)-style overlapping contracts

given by12

πt =βE tπt+1 +κyt (9)

which replaces the frictionless supply side (3).

Theorem 2 (Sticky Price Determinacy). The sticky-price model, given by (4), (9), with the

Taylor rule (1), has a unique, stable equilibrium if and only if

1− 1−β
κ

φy <φπ (10)

Proof. See the following (cf. time domain results from Woodford (2003), Galí (2008),

Bullard and Mitra (2002), or Lubik and Marzo (2007)) □

While the proofs can readily be found elsewhere, it is particularly instructive to repeat

them here to make the transition to establishing determinacy in the frequency domain

necessary for the sticky information model more straightforward. Combining (1), (4), and

(9) gives −β 0

σ 1

E tπt+1

E t yt+1

=
 −1 κ

σφπ 1+σφy

πt

yt

 (11)

which for β ̸= 0 can be inverted to yieldE tπt+1

E t yt+1

= A

πt

yt

 (12)

where A =
 1

β
−κ
β

σ(φπ− 1
β

) 1+ σ
β
κ+σφy

 is the matrix of coefficients. If both eigenvalues of

A lie outside the unit circle, then A can be inverted and solving forward givesπt

yt

= lim
j→∞

A− j

E tπt+ j

E t yt+ j

 (13)

unique, bounded solution for πt and yt following Blanchard (1979).

12See, eg., Woodford (2003, p. 246) or Galí (2008, p. 49).
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The Schur-Cohn criteria, (see LaSalle, 1986, p.28), to ascertain whether both eigenval-

ues indeed do lie outside the unit circle are |det(A)| > 1 and |tr(A)| < 1+det(A). As

det(A)= 1
β

(1+σφy +κσφπ)> 1 and tr(A)= 1
β
+ σκ

β
+1+σφy > 1 (14)

the condition |det(A)| > 1 necessarily holds and |tr(A)| < 1+det(A) holds if

1< 1−β
κ

φy +φπ (15)

Given the Taylor rule (1), the monetary authority can target inflation as well as the

output gap to stabilize the economy - Woodford (2003, pp. 254–255), “... indeed, a large

enough [response to] either [the output gap or inflation] suffices to guarantee determinacy”.

Indeed, the real rate can be raised in response to an off equilibrium inflation increase

even by responding to output movements alone. Notice that this possibility disappears if

β= 1 - however this is misleading as although an average long-run tradeoff disappears

in this case, a dynamic one remains πt−E tπt+1
κ

= yt which monetary policy needs for its

targeting of inflation (or output) as different horizons to translate into a response to

current inflation as we will see later in our analysis of extended Taylor rules.

Consider as an intuitive alternative the expectational Phillips curve of Lucas (1973),

expressed in terms of inflation and abstracting from shocks

yt =α (πt −E t−1πt) (16)

where α≥ 0 is the (short run) slope of the Phillips curve that predicts output gaps from

unexpected inflation, i.e. forecast errors.

Theorem 3 (Lucas (1973) Determinacy). The expectational Phillips curve model, given by

(4), (16), with the Taylor rule (1), has a unique, stable equilibrium if and only if

φπ > 1 (17)

Proof. Combining the IS curve (4) and the Taylor rule (1)

(
1+σφy

)
yt = E t yt+1 −σφππt +σE tπt+1 (18)

inserting the Phillips curve (16)

(
1+σφy

)
α (πt −E t−1πt)=αE t [πt+1 −E tπt+1]−σφππt +σE tπt+1 (19)

=−σφππt +σE tπt+1 (20)
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10 INATTENTIVENESS AND THE TAYLOR PRINCIPLE

and now taking time t−1 expectations and recalling the law of iterated expectations

0=−σφπE t−1πt +σE t−1E tπt+1 (21)

or φππt|t−1 = E t−1πt+1|t where πt|t−1 ≡ E t−1πt and solving forward, Blanchard (1979)

πt|t−1 = lim
j→∞

1

φ
j
π

E t−1πt+ j|t+ j−1 = lim
j→∞

1

φ
j
π

E t−1πt+ j (22)

delivers a unique, bounded solution for πt|t−1 if and only if 1<φπ. This determines the

value for πt|t−1 (and hence πt+1|t by the time invariance of the problem) so

πt = 1(
1+σφy

)
α+σφπ

(
σE tπt+1 +

(
1+σφy

)
αE t−1πt

)
(23)

and yt then from (16) and Rt from (1). □

Notice now that despite the fact that we are using a different supply side, the expecta-

tional Phillips curve of Lucas (1973), we have the same determinacy bounds on monetary

policy as in the frictionless case of theorem 1.13 Both of these models, in contrast to the

sticky price model, have vertical long run Phillips curves. Specifically, the frictionless

model has a vertical Phillips curve at every horizon - from (3) yt = 0 - and the Lucas (1973)

supply side at the one period horizon. To see this, take the t−1 expectation of (16)

E t−1 yt =αE t−1 [πt −E t−1πt]= 0 (26)

We will now show that this equivalence between the determinacy bounds on the

frictionless model and the determinacy bounds of Phillips curves that become vertical in

the long run holds more generally. We will begin by introducing three different Phillips

curves and how they relate to a long run vertical curve before we then turn to their

determinacy.

13Note that
(
1+σφy

)
α+σφπ ̸= 0 if we are to be able to recover πt from E t−1πt. As we only consider

φπ,φy ≥ 0, this holds here with certainty. As we shall see later, for more general models, this might not

hold everywhere, but is simply a singularity in the parameter space that prevents the unique resolution

of the prediction error(s). Additionally, in the frictionless model, the output gap was always closed and

hence output was determined apart from monetary policy: an indeterminacy would only be a nominal

indeterminacy that afflicted πt and, hence, Rt. This is not true here as an indeterminacy in E t−1πt would

lead to an indeterminacy in yt through the Phillips curve (16)

yt =α (πt −E t−1πt)= α(
1+σφy

)
α+σφπ

(
σE tπt+1 +

(
1+σφy

)
αE t−1πt

)−αE t−1πt (24)

= ασ(
1+σφy

)
α+σφπ

(
E tπt+1 −φπE t−1πt

)
(25)
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3. PHILLIPS CURVES OF IMPERFECT INFORMATION

In this section, we review two Phillips curves - sticky information and imperfect common

knowledge - and introduce a general finite inattentiveness supply side. The first two are

examples of each of Angeletos and Lian’s (2018) “two leading forms of learning” where

agents either become gradually aware of the fundamental or receive private signals about

it. We juxtapose these three alongside the canonical sticky price Phillips curve from (27)

and relate them to the natural rate hypothesis (NRH).

3.1. Phillips Curves in the Frequency Domain - Sticky Information

The sticky information Phillips curve has an infinite regress of price plans or lagged

expectations that cannot be expressed recursively in the time domain,14 precluding the

application of standard DSGE techniques to assess determinacy. We prove in the following,

however, that the sticky information Phillips curve does have a recursive representation

in the frequency domain, requiring this frequency domain perspective. 15 To this end,

we review two Phillips curves in this section - the canonical sticky price and sticky

information - and present their frequency domain equivalents. The frequency domain

provides a novel, fundamental perspective on the sticky information Phillips curve, while

merely providing an alternative representation for the sticky price Phillips curve.

We begin with the standard linear New Keynesian sticky-price Phillips curve (NKPC)

with Calvo (1983)-style overlapping contracts given by16

πt =βE tπt+1 +κyt (27)

where yt is the output gap, πt inflation, 0 < β < 1 is the representative household’s

idiosyncratic discount factor and κ = (1−θ)(1−βθ)
θ

Θ is the slope of the short run Phillips

curve with 0< 1−θ < 1 being the probability of a price update - that is, θ is the Calvo (1983)

sticky price parameter that measures the degree of nominal rigidity - and Θ collects other

parameters, such as the link between marginal costs and the output gap, the interaction

14In contrast to the sticky price Phillips curve, whose infinite regress of forward-looking price setting

behavior can be represented recursively in the time domain.
15Our approach does not require us to include shocks explicitly, see also footnote 11, hence we are

defining the processes in terms of the kernel of the operator that defines the linear rational expectations

model, see Al-Sadoon (2020). See the appendix for an introduction to the frequency domain techniques

necessary for our analysis.
16See, eg., Woodford (2003, p. 246) or Galí (2008, p. 49).
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between returns to scale, etc. Hence, inflation today is a function of current output gap

and future expected inflation. Applying the z-transform gives

π(z)=β1
z

(π(z)−π0)+κy(z) (28)

which implies that inflation and the output gap are linked at all frequencies z. To see this,

assume that the output gap is a known function in z, y(z), analytic on the unit disk, then

π(z)= 1
z−β

(
κzy(z)−βπ0

)
(29)

which uniquely determines inflation as π(z) with π(0) = κy(0) by continuation over the

singularity at z = β. Conversely, assume that inflation is a known function in z, π(z),

analytic on the unit disk, then

y(z)= z−β
κz

π(z)+ β

κz
π0 ↔ y(z)= 1

κ
π(z)− β

κz
(π(z)−π0) (30)

which uniquely determines the output gap as y(z) with y(0) = 1
κ
π(0) by continuation

again. Hence, we conclude that the sticky price Phillips curve purports an inexorable link

between inflation and the output gap at all frequencies.

Sticky information models implement probabilistic contracts of predetermined prices in

the vein of Fischer (1977) with the Calvo (1983) mechanism.17 Mankiw and Reis’s (2002)

version, the sticky-information model, yields the following aggregate supply equation

πt = 1−λ
λ

ξyt + (1−λ)
∞∑

i=0
λiE t−i−1 [πt +ξ (yt − yt−1)] (31)

where yt is the output gap, πt inflation, ξ> 0 measures the degree of strategic complemen-

tarities, and 0< 1−λ< 1 is the probability of an information update. The infinite regress

of lagged expectations precludes a recursive representation in the time domain.

These lagged expectations (E t−i [xt] , i > 0) were dubbed “withholding equations” by

Whiteman (1983) and the Wiener-Kolmogorov prediction formula (B.18) provides the

representation

Z {E t−i[xt]}= zi
[

x(z)
zi

]
+
= x(z)−

i∑
j=0

x j(0)z j (32)

where x j(0) is the j′th derivative of x(z) evaluated at the origin. These withholding

equations by themselves are not sufficient to solve models like those involving the sticky

17See Bénassy (2002, Ch. 10), Mankiw and Reis (2002), and Devereux and Yetman (2003).
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information Phillips curve (31), as it requires an infinite number of withholding equa-

tions18. Using (32), the sticky information Phillips curve (31) can be expressed as

π(z)= 1−λ
λ

ξy(z)+ (1−λ)
∞∑

i=0
λi

[
π(z)−

i∑
j=0

π j(0)z j +ξ(1− z)

(
y(z)−

i∑
j=0

y j(0)z j

)]
(33)

The infinite sums in (33) can be resolved by noting that:19

∞∑
i=0

λi

[
x(z)−

i∑
j=0

x j z j

]
= 1

1−λ x(z)−
∞∑

i=0
λi

i∑
j=0

x j z j = 1
1−λ x(z)−

∞∑
j=0

∞∑
i= j

x j z jλi (34)

= 1
1−λ x(z)−

∞∑
j=0

∞∑
i=0

λix j z jλ j = 1
1−λ x(z)−

∞∑
j=0

1
1−λλ

ix j z jλ j (35)

= 1
1−λ (x(z)− x(λz)) (36)

Combining these results we get the following representation of the Phillips curve (31)

π(z)= ξ
(
1−λ
λ

)
y(z)+π(z)−π(λz)+ξ(1− z)y(z)−ξ(1−λz)y(λz) (37)

collecting terms gives ξ(1−λz)y(z)=λπ(zλ)+ξλ(1−λz)y(λz) which we rearrange to yield

the following representation of the Phillips curve of the sticky information model in the

frequency domain

ξ

(
1
λ
− z

)
y(z)=π(λz)+ξ(1−λz)y(λz) (38)

The output gap at a given frequency, z, depends on inflation and itself at dampened

frequencies, λz. Recalling from the previous section and the AR(1) example that

z = Re−iω, where ω is the angular frequency and R is the radius equal to one for un-

conditional moment or long run statistics and zero for impact or high frequency effects,

λz = R̃e−iω, R̃ =λR which serves to dampen or scale the variable towards the origin. The

parameter λ or probability of not receiving an information update introduces a form of

stickiness in the frequency domain. If the fraction of firms which get an information

update, 1−λ, is low (high) and hence λ closer to one (zero), the output gap is driven

more strongly by inflation at low (high) frequencies, that is R̃ =λR is closer to R (zero).

However, in the long run, there is no tradeoff between output gap and inflation as the
18Tan and Walker (2015, p. 99) claim that their method can be “easily adapted” to models like the

sticky information model using withholding equations by “replacing E t with E t− j for any finite j.” This is

misleading or incomplete, as the sticky information model involves lagged information that reaches back

past any finite j.
19The exchange of the order of summation follows from our assumption of processes in the space spanned

by time-independent square-summable linear processes. Also note that we provide a different, albeit more

lengthy approach in the appendix.
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rigidity of information which determines output gap becomes smaller and eventually

vanishes. Output gap at a given frequency then only depends on inflation at higher

frequencies; i.e., at the lowest frequency |z| = 1, the output gap is independent of the

lowest frequency or |z| = 1 movements in inflation. That is, the sticky information Phillips

curve becomes vertical in the long run, as pointed out in the time domain by Mankiw and

Reis (2002).

It is the recursivity in the frequency domain implied by (38) that drives this lowest

frequency independence and this follows from the properties of scaling in the frequency

domain laid out in the previous section. As a result, the output gap can be determined by

inflation via the sticky information Phillips curve but not vice versa. This absence of a

stable, long-run trade off between inflation and the output gap can be seen through the

frequency domain representation by developing (38) further

y(z)= λ

ξ

1
1−λz

π(λz)+λy(λz) (39)

which is recursive in y(λi z), yielding the following

y(z)= 1
ξ

∞∑
j=1

λ j

1−λ j z
π(λ j z)+ lim

j→∞
λ j y(λ j z) (40)

Defining π̃(λ j z)≡ 1
1−λ j zπ(λ j z), we get

y(z)= 1
ξ

∞∑
j=1

λ jπ̃(λ j z)+ lim
j→∞

λ j y(λ j z) (41)

Now take πt as a given mean zero, linearly regular covariance stationary stochastic

process with known Wold representation, i.e., π(z) as an analytic function with a region

of convergence of at least |z| ≤ 1. Thus, π(λ j z) has a region of convergence of at least

|λ j z| ≤ 1, which as 0 < λ < 1 is |z| ≤ λ− j and hence π(λ j z) has a region of convergence

of at least |z| ≤ 1. So π̃(λ j z) will also have a region of convergence of at least |z| ≤ 1 for

0<λ< 1 as the pole z ∈C : 1−λ j z = 0 is outside the unit circle and the sum is convergent

from the λ j weights. Turning to the limit term, lim j→∞ y(λ j z) = y(0), |y(0)| < ∞ is the

impact response on the output gap, hence lim j→∞λ j y(λ j z) for 0 < λ< 1. That is, given

π(z), analytic over the unit disk, y(z) is given by

y(z)= 1
ξ

∞∑
j=1

λ jπ̃(λ j z)= 1
ξ

∞∑
j=1

λ j

1−λ j z
π(λ j z) (42)

over the unit disk.

The converse, however, is not true. Instead, now take y(z) as a given mean zero, linearly

regular covariance stationary stochastic process with known Wold representation, an
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analytic function with a region of convergence of at least |z| ≤ 1. Starting from (39)

π(λz)= ξ

λ
(1−λz) (y(z)−λy(λz)) (43)

and inflation is given by

π(z)= ξ

λ
(1− z) (y(z/λ)−λy(z)) (44)

Notice that a π(z) representation of inflation from this would demand that y(z/λ) be

analytic with a region of convergence of at least the unit disk. That is, y(z) would need

a region of convergence of at least |zλ| ≤ 1 or of at least |z| ≤ 1/λ for 0 < λ< 1, which of

course is outside the unit circle. Thus, knowing y(z) as a given mean zero, linearly regular

covariance stationary stochastic process, analytic over the unit disk, is insufficient to

determine π(z) as an analogously defined process, analytic over the unit disk.

Thus we conclude that the sticky information Phillips curve determines the output gap

from inflation and not the other way around. Contrast this with the sticky price Phillips

curve (28) rewritten as

π(z)= 1
1−β/z

(
κy(z)−β/zπ(0)

)
(45)

or

y(z)= 1−β/z
κ

π(z)+ β

κ

1
z
π(0) (46)

From (46) it follows directly that assuming πt is a given mean zero, linearly regular

covariance stationary stochastic process with known Wold representation, i.e., π(z) as an

analytic function with a region of convergence of at least |z| ≤ 1, that the same holds for

y(z). For the converse, notice that as 0<β< 1 there is a pole z ∈C : 1−β/z = 0 inside the

unit circle. Thus, given a mean zero, linearly regular covariance stationary stochastic

process with known Wold representation for y(z), π(z) is also an analytic function with a

region of convergence of at least |z| ≤ 1 as the singularity at the pole z =β can be removed

via

lim
j→∞

(
1−β/z

)
π(z) != 0= κy(β)−π(0) (47)

Hence, in contrast to the sticky information Phillips curve, the sticky price Phillips curve

does imply a stable long run tradeoff between inflation and the output gap. This difference

is decisive for implications of monetary policy and, in particular, for those of determinacy

to which we turn next.
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3.2. Phillips Curves under Imperfect Common Knowledge

Instead of examining inattentiveness via outdated information, another strand in the

literature examines the consequences of imperfect common information. With firms

having only incomplete, noisy signals on the state of the economy, be this assumed

exogenously like Nimark (2008) or as the result of a capacity constraint like Adam (2007),

they have different information sets and disagree about the state of the economy. Nimark’s

(2008) shows that the assumption of common knowledge of rationality enables the Phillips

curve to be expressed via an infinite cascade of higher order expectations in the otherwise

standard time recursive relation between current marginal costs and current and future

inflation.20 We show that this cascade of higher order expectations and the recursivity of

the average higher order expectations allows us to express this cascade recursively in the

signal space, giving us a compact representation of the imperfect common information

Phillips curve.

Nimark (2008) presents a Phillips curve that embeds the standard sticky price approach

into this imperfect information setup as follows

πt = (1−θ)
(
1−βθ) ∞∑

k=0
(1−θ)k mc(k)

t|t +βθ
∞∑

k=0
(1−θ)kπ(k+1)

t+1|t (48)

where mct are the aggregate marginal costs and the remainder of variable names and

parameters are identical to the sticky price Phillips curve in (27). Imperfect knowledge is

encompassed in the variables on the right-hand side of (48) where the following notation

is used

x(0)
t|t ≡ xt x(1)

t|s ≡
∫

E [xt|Is( j)]d j x(k)
t|s ≡

∫
E

[
x(k−1)

t|s xt

∣∣∣Is( j)
]

d j (49)

where Is( j) is the atomistic agent j’s information set at time s. Hence the imperfect

common knowledge Phillips curve in (48) contains the infinite cascade of higher order

beliefs or Townsend’s (1983) forecasting the forecasts of others. That is, inflation depends

not only on marginal costs and future expected inflation, but the average (via the integral

over agents) imperfect expectation of marginal costs and future expected inflation, the

average imperfect expectation of the average imperfect expectation of marginal costs and

future expected inflation, and so forth.

20Angeletos and Lian (2018) and Angeletos and Huo (2021) address the potential for dynamic higher

order expectations to inhibit this time recursive relation.
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We express this Phillips curve recursively by defining the average higher order expecta-

tions operator

Hsxt ≡
∫

E [xt|Is( j)]d j (50)

and rewriting (48) as

πt = (1−θ)
(
1−βθ) ∞∑

k=0
(1−θ)k Hk

s mct +βθ
∞∑

k=0
(1−θ)k Hk

s Hsπt+1 (51)

= (1−θ)
(
1−βθ)

1− (1−θ)Hs
mct + βθ

1− (1−θ)Hs
Hsπt+1 (52)

which follows as 0< 1−θ < 1. Multiplying both sides with 1− (1−θ)Hs gives

(1− (1−θ)Hs)πt = (1−θ)
(
1−βθ)

mct +βθHsπt+1 (53)

or

(1−Hs)πt︸ ︷︷ ︸
A forecast/prediction error

+θHs
(
πt −βπt+1

)︸ ︷︷ ︸
Standard sticky price dynamic

inflation trade off

= (1−θ)
(
1−βθ)

mct (54)

Noting further that HsE tπt+1 = Hsπt+1 due to the law of iterated expectations the Phillips

curve can be written as

(1−Hs)πt −θ (1−Hs)
(
πt −βE tπt+1

)+θ (
πt −βE tπt+1

)= (1−θ)
(
1−βθ)

mct (55)

or

πt =βE tπt+1 +
(1−θ)

(
1−βθ)
θ

Θyt +ζt (56)

with marginal costs and the output gap related through Θ as above and where ζt is a

prediction/forecast error given by

ζt =−1−θ
θ

(1−Hs)πt −β (1−Hs)E tπt+1 (57)

=−1−θ
θ

∫
(πt −E [πt|Is( j)])d j−β

∫
(E tπt+1 −E [πt+1|Is( j)])d j (58)

Comparing (56) with the sticky price Phillips curve in (27), we surmise that imperfect

common knowledge introduces forecast/prediction errors that can affect the dynamic, but

does not alter the fundamental long run dynamic trade off.



18 INATTENTIVENESS AND THE TAYLOR PRINCIPLE

To see the decisiveness of this forecast/prediction error factorization, consider the sticky

information Phillips curve (31) again, but we will stay in the time domain now

πt − 1−λ
λ

ξyt = (1−λ)
∞∑

i=0
λiE t−i−1 [πt +ξ (yt − yt−1)] (59)

= (1−λ)
∞∑

i=0
λi (E t−i−1 [πt]−πt +ξ (E t−i−1 [yt]− yt −E t−i−1 [yt−1]+ yt−1)) (60)

+ (1−λ)
∞∑

i=0
λi (πt +ξyt −ξyt−1) (61)

=πt +ξyt −ξyt−1 −
∞∑

i=0
λi (E t−i [πt]−E t−i−1 [πt]) (62)

−ξ
∞∑

i=0
λi (E t−i [yt]−E t−i−1 [yt])+ξ

∞∑
i=1

λi (E t−i [yt−1]−E t−i−1 [yt−1]) (63)

which can be rearranged to yield

yt =λyt−1 + λ

ξ

∞∑
i=0

λi (E t−i [πt]−E t−i−1 [πt]) (64)

+λ
∞∑

i=0
λi (E t−i [yt]−E t−i−1 [yt])−λ

∞∑
i=1

λi (E t−i [yt−1]−E t−i−1 [yt−1]) (65)

or

yt =λyt−1 +υt (66)

where υt = λ
ξ

∑∞
i=0λ

i (E t−i [πt]−E t−i−1 [πt]) + λ
∑∞

i=0λ
i (E t−i [yt]−E t−i−1 [yt]) −

λ
∑∞

i=1λ
i (E t−i [yt−1]−E t−i−1 [yt−1]) is a (or rather three) sequence(s) of forecast er-

rors. Compare this to the frequency domain version in (39), expressed in the time domain

using the inverse z-transform21

yt =λyt−1 + 1
2πi

∮
|z|=1

zt−1
(
λ

ξ
π(λz)+λy(λz)−λy(λz)λz

)
dz (67)

That is, the long run relation given by the sticky information model is yt = λyt−1 with

infinite sequences of forecast errors producing a time varying relation that disappears

in the limit. Analogously, the long run relation given by Nimark’s (2008) Phillips curve

is given by the long run dynamic relation of the standard sticky price model to which

he added the information imperfection. The Calvo parameter θ dictates the nominal

sticky price rigidity and setting it to zero in (55) gives the Phillips curve with only the

information imperfection

(1−Hs)πt = mct ⇒ yt = ζ̃t (68)

21See the appendix.
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where ζ̃t = limθ→0
θ
Θζt = 1

Θ

∫
(πt −E [πt|Is( j)])d j. That is, Nimark’s (2008) Phillips curve

is non vertical solely due to and identically to the standard sticky price model, the informa-

tion rigidity itself gives a vertical long run Phillips curve. As Coibion and Gorodnichenko

(2015b) demonstrate, the sticky information and noisy information models both relate

their respective information rigidities to the same relationship between average forecast

errors and prediction revisions, consistent with our assessment that both models share

asymptotic properties directed by their common, vertical long run Phillips curve.

3.3. Phillips Curves under Finite Inattentiveness

Both of the above models have the property that the Phillips curve becomes vertical

in the forecasting limit and the output gap is necessarily closed, i.e. lim j→∞ E t
[
yt+ j

]=
0. Instead of limiting our analysis to specific models such as the two above, we will

now introduce a Phillips curve that is generic and otherwise unspecified apart from its

satisfying the following version of the natural rate hypothesis following Carlstrom and

Fuerst (2002)22

E t−k [yt]= 0∀t (69)

in such a model, the output gap is necessarily closed on average due to the law of iterated

expectations - the Lucas (1973) expectational Phillips curve (16) analyzed above satisfies

this at k = 1. With the long run setting it at some finite horizon,23 this ensures that

Lucas’s (1972) NRH is fulfilled. A supply side that fulfills this condition can be expressed

as

yt =
k−1∑
j=0

(
E t− j [yt]−E t− j−1 [yt]

)
(70)

Non-zero output gaps can be represented wholly as innovations or forecast errors without

making any conjecture as to admissible solutions, in the words of Friedman (1977, p. 456),
22Explicit examples are models that implement contracts of predetermined prices in the vein of Fischer

(1977) with finite duration, including Andrés, López-Salido, and Nelson’s (2005, p. 1034) “Sticky information,

staggered á la Taylor,” as found also in Koenig (2004), Collard, Dellas, and Smets (2009), and Woodford

(2010); the Mussa-McCallum-Barro-Grossmann “P-bar model”—see McCallum (1994) and McCallum and

Nelson (2001); models of finitely staggered predetermined prices such as Fischer (1977) and Blanchard

and Fischer (1989, pp. 390–394); Carlstrom and Fuerst’s (2002, p 81-82) model in this spirit; as well as the

expectational Phillips curve of Lucas (1973)—see also Sargent and Wallace (1975)—that formalized the

rational expectations revolution here in (16).
23It makes no difference for the conclusions that follow whether the long run sets in after four quarters

or four millennia: k is completely arbitrary for the analysis so long as it is finite.
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“[o]nly surprises matter.” Note that the effect of a surprise need not disappear immediately

after impacting the output gap, it can have a lasting—but not permanent—effect. That is,

there can be a stable short-run tradeoff between the output gap and inflation, but this

tradeoff must not be permanent if the model is to satisfy the NRH.

3.4. Long Run Phillips Curves and the Natural Rate Hypothesis

The unspecified supply side (70) is derived from the NRH and here we will provide

more insight into this hypothesis and its relevance to the specification of the supply

sides above. In particular, how the sticky-price Phillips curve (27) violates the NRH by

positing same dynamic tradeoff at every expectational horizon. This is decisive for the

determinacy properties and we show how some standard interpretations (e.g., steady

state) or alterations (e.g., indexation) to reconcile the sticky-price Phillips curve with the

NRH are incomplete and insufficient to remove a trade off that distorts the determinacy

limits on monetary policy - the Taylor principle that we will show is otherwise identical

across models under the NRH in the next section.

The NRH, succinctly by Friedman (1968, p. 11) “there is always a temporary trade-off

between inflation and employment; there is no permanent trade-off[,]” postulates that

the output gap is closed on average regardless of monetary policy. The hypothesis and

associated vertical Phillips curve are central to the rational expectations revolution.24

The NRH enjoys near-universal agreement,25 in part as models that violate the NRH

possess the “a priori implausible” implication that there exist inflationary paths on which

“a nation can enrich itself in real terms permanently.”26

McCallum (2004, pp. 21–22) explicitly highlights that the standard New Keynesian

Phillips curve (27) violates the NRH and draws a distinction between “Friedman’s weaker

24See Lucas (1972) and Sargent (1973), with Sargent (1987b, p. 7) calling Friedman’s (1968) address the

revolution’s “opening shot” and Modigliani (1977, p. 5) deeming Lucas’s (1972) rational-expectations version

the “death blow to the already badly battered Keynesian position.”
25By the late ’70s, Friedman (1977, p. 459) could note that his and Phelps’s (1967) NRH was a widely

accepted consensus that, as McCallum (2004, p. 21) remarks, “by 1980 even self-styled Keynesian economists

were agreeing to.” Krugman (1994, p. 52) confirms that “[t]he natural rate hypothesis has received near-

universal acceptance” and underlines that it “has a very solid basis in experience,” an agreement that

Phelps (1994, p. 81) was “delighted to see.” Bernanke (2003) went a step further: “Friedman’s [point ...]

that long run output is determined entirely by real factors [...] is universally accepted today by monetary

economists.”
26McCallum (1998, p. 359)
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version” and the “stronger Lucas version” of the NRH. The former states that a higher,

but constant, rate of inflation cannot permanently affect output and the latter that no

path for prices, inflation, inflation growth, etc., can permanently keep output above

its natural level. While the distinction is doubtless appropriate from the perspective

of the accelerationist controversy, the nomenclature of McCallum (2004) is perhaps

misleading as Friedman (1977, p. 274) himself made explicit that his view of the NRH is

not limited to such an accelerationist view: “[S]ome substitute a stable relation between

the acceleration of inflation and unemployment for a stable relationship between inflation

and unemployment—aware of but not concerned about the possibility that the same logic

that drove them to a second derivative will drive them to even higher derivatives.” In any

event, Lucas’s (1972) is the version that McCallum (1994) argues should be upheld by

monetary models—the critique repeated more directly in McCallum (1998, p. 359)—and

will be the version imposed in my analysis.

First, one can confirm that the standard New Keynesian sticky-price model with Calvo

(1983)-style overlapping contracts (27) cannot satisfy Lucas’s (1972) NRH by simply

taking unconditional expectations

E [yt]= 1
κ

(
E [πt]−βE [πt+1]

) ̸= 0 (71)

Even in the extreme parameterization of β= 1, the unconditional expectation of the output

gap would still be nonzero (E [yt] ̸= 0) with nonstationary inflation. As made explicit by

McCallum (1998, p. 359), the NRH requires that “E [yt] = 0 for any monetary policy[;]”

i.e., the unconditional expectation of the output gap must be zero for any monetary policy.

Nothing in this statement excludes nonstationary policies and, indeed, McCallum and

Nelson (2009, p. 7) note that the “Lucas version [...] pertains to inflation paths more

general than steady states.” Note, furthermore, that (27) posits the same immutable

tradeoff at every expectational horizon:

E t− j [yt]= 1
κ

(
E t− j [πt]−βE t− j [πt+1]

)
, ∀ j ≥ 0 (72)

or, alternatively,

E t
[
yt+ j

]= 1
κ

(
E t

[
πt+ j

]−βE t
[
πt+ j+1

])
, ∀ j ≥ 0 (73)

the tradeoff in the sticky-price model is so stable that, from the perspective of today, the

same dynamic tradeoff is expected to exist unchanged into the infinite future. The only
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way for this Phillips curve to satisfy the NRH, is if κ→∞, making the Phillips curve

always27 vertical.

The sticky-price Phillips curve indexed either to steady-state inflation28

yt = 1
κ

(
πt − π̄−β (E t [πt+1]− π̄)

)
(74)

or past inflation29

yt = 1
κ

(
πt −βE t [πt+1]−γ(

πt−1 −βπt
))

(75)

still fails to satisfy Lucas’s (1972) NRH,30 for the same reason above. Only those monetary

policies that lead to a stationary path for inflation allow the the output gap to be equal,

on average, to zero.31 As above, these Phillips curves can be made to satisfy the NRH, but

this requires κ→∞, making them always vertical.

Requiring the equilibrium path of a linearized system to be bounded does not mean

that nonstationary paths are inconsequential for local analyses. The local determinacy

of a bounded equilibrium path in the linearized system depends crucially on all other

potential paths becoming unbounded so that this bounded path is unique. These other

paths need never materialize: their mere hypothetical existence in the stead of additional

bounded paths that could not be excluded is what renders the single bounded equilibrium

unique. This is Cochrane’s (2011) assessment of determinacy through a Taylor rule

being an off-equilibrium threat and requiring determinacy imposes bounds on coefficients

in a policy rule to ensure that there is a unique locally bounded equilibrium. That is,

determinacy rests on the ability to convincingly predict when an equilibrium path would

become unbounded such that it can be excluded from the class of permissible equilibria;

that arguments resting on permanent output-inflation tradeoffs are not convincing is,

of course, a central component of the NRH. Reinterpreting the New Keynesian Phillips

curves in terms of output gaps driven by inflation makes the violation of the NRH and

27I.e., at every expectational horizon.
28See Yun (1996).
29See Christiano, Eichenbaum, and Evans (2005) for γ= 1 and Smets and Wouters (2003) for 0< γ≤ 1.
30See McCallum (2004, pp. 21–22) and McCallum and Nelson (2009, pp. 6–7).
31Certainly, indexation to steady-state inflation is meaningless, should inflation be nonstationary. As

pointed out recently by Nelson (2008), it is monetary policy that determines steady-state inflation, or indeed

whether it should exist, and without having specified monetary policy, it is almost vacuous to speak of such

a value.
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its consequences for determinacy more visible:32 the right-hand sides of (27), (74), and

(75) present a description of the dynamic properties of inflation to achieve any desired

dynamic for the output gap. Of course for determinacy analysis, it is unbounded dynamics

that are desired for all but one equilibrium paths to render this remaining equilibrium

uniquely bounded. Thus, it is not the final equilibrium under study that would display

the aberrant behavior implied by an exploitation of these Phillips curves, but rather the

hypothetical paths that are being excluded for the sake of equilibrium uniqueness; and

these Phillips curves show indeed that inflation and the output gap can work in concert

to such an end all the way through to the long run. A NRH model, in contrast, must

display a vertical Phillips curve that prevents any such concerted long-run reaction: only

unexpected components of inflation cause output gaps.

4. EXISTENCE AND UNIQUENESS FOR STICKY INFORMATION

Now we turn to establishing the determinacy bounds with the Taylor rule (1), the

dynamic IS equation (4), and supply curves characterized by inattentiveness. Note that

the absence of exogenous driving forces is without loss of generality and will remain the

same if our systems are appended with stationary driving forces (i.e., we are investigating

the properties of the homogenous component of the system of difference equations).33

For a complete solution, one would then have the additional task of associating the

exogenous driving forces with the expectation errors (see, e.g., Sims (2001)). This is

precisely the advantage of our analysis, we separate the question of whether there is a

unique equilibrium from what this equilibrium is.

We will begin with the sticky information Phillips curve (31). As established in the

previous section, this Phillips curve is recursive in the frequency domain and, hence, we

will exploit this and establish conditions for its determinacy in the frequency domain. To

make the connection to standard, time domain results more clear, we will reestablish the

determinacy conditions for the sticky price model of theorem 2 but now in the frequency

domain.

32Though of no consequence algebraically, reformulating the Phillips curves with the output gap on

the left-hand side draws a parallel to Modigliani’s (1977, p. 5) assessment that Friedman’s (1968) NRH

“turns the standard explanation on its head: instead of (excess) employment causing inflation, it is (the

unexpected component of) the rate of inflation that causes excess employment.”
33See footnote 11 and also footnote 15.
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Combining the Taylor rule (1), the dynamic IS equation (4) and expressing in the

frequency domain gives

(1+σφy)zy(z)+σφπzπ(z)= y(z)− y0 +σ(π(z)−π0) (76)

Notice that we are abstracting from shocks and these equations (along with either of the

supply curves from the previous section) are entirely homogenous. Thus one solution, the

fundamental solution is zero at all frequencies - an inability to rule out nonzero solutions

is tantamount to not being able to rule out stable sunspot solutions - i.e. non-uniqueness

or indeterminacy.

First, we close the model with (28), the standard sticky-price Phillips curve,

π(z)=β1
z

(π(z)−π0)+κy(z) (77)

and the two foregoing can be summarized in a matrix system as−β 0

σ 1

π(z)

y(z)

=
 −1 κ

σφπ 1+σφy

 z

π(z)

y(z)

+
−β 0

σ 1

π0

y0

 (78)

or equivalently,

(I2 − zA)

π(z)

y(z)

=
π0

y0

 (79)

where A =
 1

β
−κ
β

σ(φπ− 1
β

) 1+ σ
β
κ+σφy

 is the matrix of coefficients. We summarize the

condition for determinacy in the following.

Theorem 4 (Sticky Price Determinacy in the Frequency Domain). The sticky price model,

given by (76), (28), with the Taylor rule (1), has a unique, stable equilibrium if and only if

φπ > 1− 1−β
κ

φy (80)

Proof. See the following (cf. time domain result 2) □

To solve the system of equations in (79) we first decompose the matrix A and then

use Cauchy’s residue theorem as above to determine π0 and y0, the initial conditions for

inflation and the output gap. Define ρ i=eig(A). Iff ρ i, i = 1,2 there are two removable

singularities. Decompose matrix A into its eigenvalues, and its eigenvector-matrix V as

A =V

λ1 0

0 λ2

V−1 =VΛV−1 (81)
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Similar to Klein (2000) we definew(z)

u(z)

=V−1

π(z)

y(z)

 for z = 0,1,2 . . . (82)

Substituting into our equation system, (79) gives

(
I2 − zVΛV−1)V

w(z)

u(z)

=V

w0

u0

 (83)

which can be rewritten and redefined as

(I2 − zΛ)

w(z)

u(z)

=
w0

u0

 (84)

The diagonality of the foregoing yields two independent equations

(1− zρ1)w(z)= w0 and (1− zρ2)u(z)= u0 (85)

If both eigenvalues, |λ1| and |λ2| > 1, we can eliminate the singularities via

lim
z→1/λ1

(1− zλ1)w(z)= 0 and lim
z→1/λ2

(1− zλ2)u(z)= 0 (86)

pinning down the two conditions w0 = 0 and u0 = 0. From our definition (82) and equation

(84) we can therefore deduce π0

y0

=V

0

0

=
0

0

 (87)

uniquely defining π0 = 0 and y0 = 0.

The Schur-Cohn criteria can be applied to ascertain whether both eigenvalues, λ1 and

λ2, indeed do lie outside the unit circle (see LaSalle, 1986, p.28). These criteria, expressed

in terms of A are |det(A)| > 1 and |tr(A)| < 1+det(A). As

det(A)= 1
β

(1+σφy +κσφπ)> 1 and tr(A)= 1
β
+ σκ

β
+1+σφy > 1 (88)

The condition |det(A)| > 1 necessarily holds and |tr(A)| < 1+det(A) holds if

1< 1−β
κ

φy +φπ. (89)

Hence, determinacy in the sticky price model demands

1− 1−β
κ

φy <φπ. (90)

Given the Taylor rule (1), the monetary authority can target inflation as well as the

output gap to stabilize the economy - Woodford (2003, pp. 254–255), “... indeed, a large

enough [response to] either [the output gap or inflation] suffices to guarantee determinacy”.
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Indeed, the real rate can be raised in response to an off equilibrium inflation increase even

by responding to output movements alone. Notice that this possibility disappears if β= 1 -

however this is misleading as although an average long-run tradeoff disappears in this

case, a dynamic one remains πt−E tπt+1
κ

= yt which monetary policy needs for its targeting of

inflation (or output) at different horizons to translate into a response to current inflation

as we will see later in our analysis of extended Taylor rules.

Turning to the sticky information model that was presented in the previous section. In

the frequency domain the model is given by the Phillips curve (38)

ξ

λ
y(z)= zξy(z)+π(λz)+ξ(1−λz)y(λz) (91)

and the IS curve equation with the interest rate rule (1)

(1+σφy)zy(z)+σφπzπ(z)= y(z)− y0 +σ(π(z)−π0) (92)

We summarize determinacy in the following.

Theorem 5 (Sticky Information Determinacy). The sticky information model, given by

(76), (91), with the Taylor rule (1), has a unique, stable equilibrium if and only if

φπ > 1 (93)

Proof. See the following □

At z = 0, define y(0)= y0, π(0)=π0, the Phillips curve (38) is determined by

ξ
1−λ
λ

y0 =π0 (94)

which yields one initial condition: inflation at z = 0 is a constant share of output increasing

in the share of firms that received an information update in the initial period 1−λ. The

remaining condition at z = 0 must follow from the system given by the Phillips curve (38)

ξ

λ
y(z)= zξy(z)+π(λz)+ξ(1−λz)y(λz) (95)

and the IS curve equation with the interest rate rule (1)

(1+σφy)zy(z)+σφπzπ(z)= y(z)− y0 +σ(π(z)−π0) (96)

The matrix system is determined by (94), (91) and (96) as
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π(z)

y(z)

=
φπ 1+σφy−λ

σ

0 λ

 z

π(z)

y(z)

+
1−λ

λ
ξ+ 1

σ

0

 y0 +
− λ

σξ
−λ
σ

(1−λz)
λ
ξ

λ(1−λz)

π(λz)

y(λz)


(97)

If [π(λz), y(λz)]′ are analytic functions ∀ |z| < 1, then [π(z), y(z)]′ are analytic functions

∀ |z| < 1
λ

and as 0<λ< 1 certainly for |z| < 1< 1
λ

. Similarly to (79) the system of equations

can be expressed as

(I2 − zA)

π(z)

y(z)

=
1−λ

λ
ξ

0

 y0 +
− λ

σξ
−λ
σ

(1−λz)
λ
ξ

λ(1−λz)

π(λz)

y(λz)

 (98)

where A =
φπ 1+σφy−λ

σ

0 λ

. The eigenvalues of matrix A are ρ1 =φπ,ρ2 =λ which can be

factored as A =VΛV−1 where Λ is the matrix of eigenvalues, giving usw(z)

u(z)

=V−1

π(z)

y(z)

 (99)

where V =
1 1+σφy−λ

σ(λ−φπ)

0 1

 and V−1 =
1 −1+σφy−λ

σ(λ−φπ) .

0 1

.

The system of equations can be diagonalized in w(z) and u(z) as

(I2 − zΛ)

w(z)

u(z)

=
1−λ

λ
ξ+ 1

σ

0

u0 +
−λ

ξ
( 1
σ
+v12) −λ

ξ
( 1
σ
+v12)(ξ+v12)(1− ξλ

ξ+v12
z)

λ
ξ

λ
ξ
( 1
σ
+v12)(1− ξλ

ξ+v12
z)

w(λz)

u(λz)


(100)

The first equation is given by

(1− zφπ)w(z)=
(
1−λ
λ

ξ+ 1
σ

)
u0 − λ

ξ

(
1
σ
+u12

)
w(λz)− λ

ξ

(
1
σ
+v12

)
(ξ+v12)

(
1− λξ

ξ+v12
z
)

u(λz).

(101)

Iff φπ > 1 there is a removable singularity, which provides the additional initial condition

lim
z→ 1

φπ

(1− zφπ)w(z)= 0 (102)

which uniquely determines the missing initial condition u0(
1−λ
λ

ξ+ 1
σ

)
u0 = λ

ξ

(
1
σ
+v12

)(
w

(
λ

φπ

)
+ (ξ+v12)

(
1− λξ

ξ+v12

1
φπ

)
u

(
λ

φπ

))
(103)



28 INATTENTIVENESS AND THE TAYLOR PRINCIPLE

from which together with (99) and (94) we can therefore deduce π0 = 0 and y0 = 0.34

To summarize, φπ > 1 is a necessary condition for determinacy in the sticky information

model and not merely sufficient as above in the sticky price model. No amount of output

gap targeting can replace a more than one for one response to inflation by the monetary

authority. That is, in the absence of a stable long run tradeoff between inflation and

output, the Taylor principle as a policy recommendation holds directly.

Under a simple, current inflation-targeting rule, determinacy is obtained if the central

bank follows an active monetary policy satisfying the Taylor principle. This holds true for

both the sticky price and the sticky information model. Including output gap targeting

into the Taylor rule leads to different consequences for monetary policy in the two models.

In the presence of sticky prices, the monetary authority can react to inflation and/or

the output gap to achieve stability. Output gap movements are translated into inflation

movements at a rate of (1−β)/κ allowing for a feedback effect to inflation, the Phillips curve

relationship in the long run. In the sticky information model the monetary authority has

fewer options available to stabilize the economy and it should follow an active monetary

policy by strongly reacting to inflation - its concern for the output gap is irrelevant for

this determinacy consideration. A monetary authority that is uncertain as to whether the

sticky price of information paradigm reigns is well advised to simply respond directly to

inflation vigorously (φπ > 1) as this will ensure determinacy in both models. Note that

this condition is independent of any parameters or their values outside of the monetary

authorities own reaction function - no confidence in estimated parameters (such as the

34 Note that (103) determines u0 only implicitly, i.e., in dependence of u
(
λ
φπ

)
and w

(
λ
φπ

)
. Hence for this

homogenous solution where the zero solution is always a solution, uniqueness implies the solution is the

zero solution, see footnote 11. As stated above, ascertaining that the equilibrium is unique is different than

calculating the equilibrium itself and we proceeded without loss of generality with respect to determinacy

in the absence of exogenous shocks. When confronted with exogenous shocks, u0 would have to be jointly

solved with u
(
λ
φπ

)
and w

(
λ
φπ

)
via the system of equations

w(z)

u(z)

=
(1−φπz)−1( 1−λ

λ
ξ+ 1

σ
)

0

u0 +
−λ

ξ
( 1
σ
+v12)((1−φπz)−1) −λ

ξ
( 1
σ
+v12)(ξ+v12)(1− λξ

ξ+v12
z(1−φπz)−1

λ
ξ
((1−φπz)−1) λ

ξ
(ξ+v12)(1− λξ

ξ+v12
z(1−λz)−1

w(λz)

u(λz)


(104)

That is, while we can analytically solve for determinacy conditions in the sticky information model with

forward looking demand (4), this approach does not let us analytically solve for, say, impulse responses to

inhomogenous shocks.
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slope of the Phillips curve to determine an appropriate value for output gap targeting in

the sticky price model) is needed.

5. EXISTENCE AND UNIQUENESS FOR IMPERFECT COMMON KNOWLEDGE

We now turn to the model of imperfect common knowledge by Nimark (2008) that

combines an information rigidity with the standard sticky price nominal rigidity. This is a

particularly insightful exercise as with both the sticky price and information rigidities, the

determinacy bounds will coincide with the sticky price results from theorem 2 and with

only the information rigidity with those of the sticky information model of the previous

section in theorem 5.

Combining the IS curve (76) and the Taylor rule (1) with the imperfect common know-

ledge Phillips curve (56)

πt =βE tπt+1 +κyt +ζt (105)

we observe that the model is identical to that of theorem 2 apart from the fore-

cast/prediction error ζt that, like exogenous driving forces we have abstracted from,

are irrelevant for determinacy.35 We summarize this in the following.

Theorem 6 (Nimark (2008) Determinacy). The imperfect common knowledge sticky price

model, given by (76), (56), with the Taylor rule (1), has a unique, stable equilibrium if and

only if

1− 1−β
κ

φy <φπ (107)

Proof. Following the proof of theorem 2 we can combine (76), (56), with the Taylor rule (1)

as E tπt+1

E t yt+1

= A

πt

yt

−
 1
β

0

ζt (108)

35 It is important to reiterate that providing the condition under which we have a determinant solution is

not the same as providing the solution. Just as in the sticky information model, see footnote 34, calculating

the solution in the presence of exogenous shocks would require us to resolve the prediction/forecast errors

in ζt. Solving forward (109) yieldsπt

yt

= lim
j→∞

A− j

E tπt+ j

E t yt+ j

+
∞∑
j=0

A− j

 1
β

0

E tζt+ j (106)

and this sequence of prediction/forecast errors E tζt+ j would have to be resolved consistent with the

exogenous shocks and conditioning assumptions on agents’ information sets.
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where A =
 1

β
−κ
β

σ(φπ− 1
β

) 1+ σ
β
κ+σφy

 and ζt = −1−θ
θ

∫
(πt −E [πt|Is( j)])d j −

β
∫

(E tπt+1 −E [πt|Is( j)])d j is an increment process of forecast/prediction errors.

Determinacy of the inhomogenous system requires determinacy of the homogenous

system, which like in theorem 2 requires both eigenvalues of A be outside the unit circle,

or 1− 1−β
κ
φy <φπ restricting ourselves to positive coefficients.

Alternatively, we can appeal to frequency domain methods as in theorem 4. Applying

the z-transform to the above gives

(I2 − zA)

π(z)

y(z)

=
π0

y0

−
 1
β

0

ζ(z) (109)

we require π(z), y(z), and ζ(z) to be analytic on the unit disk and (109), along with the

underlying prediction/forecast error definition of ζ(z), will fail to provide a unique set of

restrictions unless we can pin down π0 and y0. Precisely when both eigenvalues of A are

outside the unit circle, can we appeal as in theorem 4 to Cauchy’s residue theorem to

provide a unique set of restrictions on π0 and y0 such thatπ(z)

y(z)

= (I2 − zA)−1

π0

y0

−
 1
β

0

 zζ(z)

 (110)

continues to be well defined via analytic continuation over these two values of z inside

the unit circle. □

The imperfect common knowledge Phillips curve has as a special form (68) with only

the information rigidity, i.e. without the sticky price friction of (68)

yt = ζ̃t (111)

which is analogous to the (3) in the frictionless model but now with the prediction/forecast

innovation ζ̃t and hence we obtain the same determinacy restriction that we summarize

in the following.

Theorem 7 (Imperfect Common Knowledge Determinacy). The imperfect common knowl-

edge model, given by (76), (68), with the Taylor rule (1), has a unique, stable equilibrium if

and only if

1<φπ (112)
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Proof. We can let κ→∞ in theorem 6.

Or we can proceed in the time domain following the proof of theorem 1 we can combine

(76), (68), with the Taylor rule (1) as

φππt = E tπt+1 −
1+σφy

σ
ζ̃t + 1

σ
E tζ̃t+1 (113)

where ζ̃t = 1
Θ

∫
(πt −E [πt|Is( j)])d j. Solving forward, Blanchard (1979)

πt = lim
j→∞

1

φ
j
π

E tπt+ j −
∞∑
j=0

1

φ
j
π

(1+σφy

σ
E tζ̃t+ j − 1

σ
E tζ̃t+ j+1

)
(114)

delivers a unique, bounded solution for πt if and only if 1<φπ. That is, only if 1<φπ does

the sunspot term lim j→∞ 1
φ

j
π

E tπt+ j disappear.

Alternatively, we can appeal to frequency domain methods as in theorem 4. Applying

the z-transform to the above gives

(
1− zφπ

)
π(z)=π0 −

1+σφy

σ
zζ̃(z)+ 1

σ

(
ζ̃(z)− ζ̃(0)

)
(115)

We require π(z) and ζ̃(z) to be analytic on the unit disk and the foregoing, along with the

underlying prediction/forecast error definition of ζ̃(z), will fail to provide a unique set of

restrictions unless we can pin down π0 uniquely. If
∣∣φπ∣∣< 1, then

π(z)= π0 − 1+σφy
σ

zζ̃(z)+ 1
σ

(
ζ̃(z)− ζ̃(0)

)(
1− zφπ

) (116)

is analytic on the unit disk for arbitrary finite values of π0. If however 1< ∣∣φπ∣∣ (or simply

1<φπ restricting ourselves to positive values of φπ), then π(z) has a singularity on the unit

disc at z = 1/φπ that can be removed by setting the residue to zero limz→1/φπ
(
1− zφπ

)
π(z)=

0 to continue π(z) as an analytic function over this singularity on the unit disk. □

Comparing theorem 7 to theorem 5 allows us to conclude that the determinacy results

under sticky information and imperfect common knowledge are identical and comparing

these further to theorem 6 and theorem 2 we remark that the instilling a model of

imperfect information with a long run tradeoff from, say, a Calvo sticky price friction will

instill it with the same determinacy properties of the latter.

6. EXISTENCE AND UNIQUENESS FOR FINITE INATTENTIVENESS

To address determinacy of equilibria under the finite inattentiveness supply side in (70),

we will assess determinacy in the following extended class of linear rational expectations
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models that includes our model

0=
p∑

i=0

n∑
j=−m

Q(i, j)E t−i X t+ j, X t =
[
Rt πt yt

]′
, 0≤ p,m,n <∞ (117)

where the Q(i, j)’s are matrices of dimensions 3×3. I.e., the model is composed of three

structural equations: the supply side, the demand side, and monetary policy. The class

encompasses all linear rational expectations models in the three variables of interest that

(i) have a finite number of leads (given by n), (ii) have a finite number of lags (given by

m), and (iii) have expectations formed at horizons from t into the finite past t− p.36 This

captures a wide range of interest rate rules found in the literature, from our standard

Taylor rule (1) to the variety of extensions we will examine later.

Theorem 8. For the system (117) to have a unique stationary solution,

(1) The model

0=
n∑

j=−m
Q̃ j X t+ j (118)

where Q̃ j =∑p
i=0 Q(i, j), must have a unique saddle-point stable solution.

(2) The square matrix [
Q′ B′

]′
(119)

must be non-singular. Q and B are block matrices of dimensions 3p×3(p+n) and

3n×3(p+n) respectively with blocks of dimension 3×3. The sth block row of Q is

given by [
0max(0,s−1−m) Q̃ (s−1,−min(s−1,m),n) 0p−s

]
(120)

where 0i is a 3 × 3i block vector of zeros and Q̃ (a,b, c) =[
Q̃(a,b) Q̃(a,b+1) . . .Q̃(a, c)

]
with Q̃(a,b) = ∑min p,a

i=0 Q(i,b). The sth block

row of B is given by[
0max(0,s+p−m−1) −B̃ (min(p+ s−1,m)) I 0n−s

]
(121)

36As discussed previously in the introduction and in footnotes 34 and 35, the absence of exogenous

driving forces in (117) is without loss of generality. The conditions for determinacy remain the same if

(117) is appended with stationary driving forces (i.e., we am investigating the properties of the homogenous

component of the system of difference equations). For a complete solution, one would then have the

additional task of associating the exogenous driving forces with the expectation errors (see, e.g., Sims

(2001)).
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where I is a 3×3 identity matrix and B̃ (a) being the last 3×3a elements of the 3×3m

matrix B that forms Anderson’s (2010, p. 7) convergent autoregressive solution to

(118).

Proof. See Appendix □

The first condition requires that the model is determinate if the information rigidity

were removed and the second requires that one can uniquely resolve the prediction errors.

The first is Anderson’s (2010) extension of the familiar Blanchard and Kahn (1980) result,

while the second formalizes Whiteman’s (1983, pp. 29–36) insight that resolving lagged

expectations, “withholding constraints” in his terminology, is not generally a trivial task.

This second restriction will hold generically unless the model of inattentiveness is ill-

specified such that at some intermediate forecasting horizon there is an (un)fortuitous

collinearity with another equation or forecasting horizon., i.e., due to the non-singularity of

the matrix
[
Q′ B′

]′
- see footnote 13 and the simple, univariate example in the appendix.

Hence, although this is a non trivial task to resolve these constraints numerically, as the

literature on models of this type has clearly demonstrated, it is the first restriction that is

the relevant restriction on monetary policy. We can then use theorem 8 to establish the

determinacy conditions under the finite inattentiveness supply curve (70) as summarized

in the following

Theorem 9 (Determinacy in Models of Inattentiveness). The finite inattentiveness model,

given by (76), (70), with the Taylor rule (1), has a unique, stable equilibrium only if

1<φπ (122)

Proof. The result is an immediate consequence of the first condition of theorem 8, recog-

nizing that the frictionless equivalent of (70) is given by yt = 0, and appealing to theorem

1. □

Recall from above that the “if” is only missing due to the possibility of a(n) (un)fortuitous

collinearity in the exact specification of the information rigidity. Excepting this, we

conclude that the determinacy conditions for our model of finite inattentiveness, imperfect

common knowledge (without additional sticky price rigidities) and sticky information are

all identical and coincide with the determinacy results in a frictionless model, i.e. theorem

1.

All three models of inattentiveness examined here share in common that their Phillips

curves become vertical in the long run. This means that the more than one for one
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response of the nominal interest rate in response to inflation of the Taylor principle can

only be satisfied directly - the degree of output gap targeting is irrelevant for determinacy.

In the sticky-price New Keynesian model, the NRH does not hold at any horizon and its

long run Phillips curve posits a stable dynamic tradeoff. As a consequence, the sticky-

price model is not even asymptotically isomorphic to its frictionless equivalent: with this

permanent link a response of the interest rate to the output gap is equivalent (proportional

to the slope of the long run Phillips curve) to a response to inflation. That is, the Taylor

principle doesn’t need to be satisfied directly and output gap targeting can substitute for

inflation targeting with respect to determinacy.

As discussed in section 3.4, several modifications of the standard sticky-price model

do satisfy the NRH in equilibrium with stationary inflation. This is insufficient as es-

tablishing determinacy requires one to look at all possible equilibria, including explosive

equilibria, in the hope that only one is non-explosive. As Cochrane (2011) points out, de-

terminacy via the Taylor principle is an off equilibrium threat. Thus, sticky-price models’

violation of the NRH cannot be separated from their results concerning determinacy.

7. EXTENSIONS

Here we examine two more general forms of the Taylor rule to capture different forms

of interest rate rules. Consider the following rule with arbitrary targeting horizons

Rt =φπE tπt+ j +φy
(
αyE t yt+m + (

1−αy
)
E t∆yt+m

)
(123)

j and m allow us to capture the targeting of inflation and real activity at different horizons

and αy enables us to examine the output gap level (αy = 1) as well as output gap growth

(αy = 0) as real activity targeting.

Theorem 10 (Inattentiveness and the General Taylor Rule). An inattentiveness model,

given by (31), (68), or (70) on the supply side; (76) on the demand side; and the general

Taylor rule (123) for monetary policy has a unique, stable equilibrium if and only if

φπ > 1 and j = 0 (124)

Proof. See the appendix. □

Note that theorem 10 contrasts starkly with existing results in sticky prices, see

table 1. Examining the table, which contains several different variants of Taylor rules

examined for determinacy in the literature as special cases of theorem 10 for models
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of inattentiveness, the first thing to notice is the utter simplicity of the results under

information rigidities. No model specific coefficients, such as subjective discount factors,

degree of nominal or informational rigidities, no elasticity of intertemporal substitution

is needed to ascertain the restrictions on the monetary policy rule. This is particularly

appealing in an uncertain environment, where these parameters are likely to be known

only with limited precision. Note, following section 3.4, that setting β = 1, does not

render the bounds identical in the sticky price and information models: a long-run

dynamic tradeoff remains πt−E tπt+1
κ

= yt which opens the possibility of monetary policy

targeting past or future inflation (i.e., backward or forward looking targeting) - but even

then these are not complete substitutes as they face upper bounds for the reaction to

(past/future) inflation. Lubik and Marzo (2007) reconcile this result with non monotonic

(e.g., oscillating) sunspot dynamics in the sticky price model - the sticky information

model admits no such possibility, just as neither output gap or growth targeting cannot

replace a concern for inflation, so too can a concern for past or future inflation not replace

the necessity of the monetary authority to vigorously respond to current inflation.

Taking a closer look, the restrictions implied information rigidities only are again more

conservative than under sticky prices: if determinacy is given under inattentiveness, it

also implies determinacy under sticky prices. Hence, in the face of model uncertainty, a

policy maker with a concern for robustness would be well-advised to heed the restrictions

we provide here. The restrictions are far from being obscure and in fact are straightfor-

ward: the celebrated Taylor principle is necessary and sufficient for determinacy. Yet,

it is the Taylor principle in its perhaps simplest, but certainly most direct form that is

relevant: the policy rule must posit a contemporaneous, more than one-for-one direct

response of the nominal interest rate to inflation. An indirect response via the output

gap or its growth rate is insufficient - concern for the real economy can not replace a

concern for inflation. This is only possible in the sticky price model as it posits a stable

long run tradeoff between inflation and the output gap. This tradeoff is absent in models

of inattentiveness as we have reiterated in the analysis above and hence the measure of

the monetary authority’s rule is in its direct response to current inflation.

Our theorem 10 is directly compatible with Loisel (2022), who provides and analysis of

determinacy in a wide set of sticky price models from the Wieland, Cwik, Müller, Schmidt,

and Wolters (2012); Wieland, Afanasyeva, Kuete, and Yoo (2016) which includes backward

looking New and “Old” Keynesian models with different dynamics in the long run tradeoffs
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FIGURE 1. Determinacy Regions

: Determinacy, : Potential Determinacy, : Indeterminacy, : Nonexistence

and Taylor rules with arbitrary horizons of inflation targeting. The decisiveness of our

restriction on monetary policy is again striking: with any horizon possible and inflation

and/or output gap and growth targeting possible, determinacy is obtained if and only if

the central bank responds to contemporaneous inflation more than one-for-one. Figure

1 depicts the situation, with our restriction in the lower panel and Loisel’s (2022) for

purely inflation targeting (again, a fleeting glance at table 1 ought to suffice to convince

the reader that simultaneous inflation and output gap targeting at arbitrary horizons is

likely to be a very complicated undertaking). It is the intermediate region between φ and

φ in the upper panel of Loisel (2022) that constitutes the disagreement. Precisely the

varying long run tradeoffs lead to the region of potential determinacy in the interior of

the upper panel in his analysis. In models of inattentiveness, these tradeoff disappears

entirely in the long run, eliminating this interior region of potentially (dynamically)

extended determinacy: only a more than one for one response to current inflation provides

determinacy as is depicted in the lower panel.

The determinacy disagreement between sticky prices and inattentiveness hinges on a

single parameter - the slope of the long run Phillips cure. The sticky price model possess

a vertical long run Phillips curve if and only if κ→∞ (though this also renders its short

run slope vertical). Letting κ go to infinity recovers our bounds in the sticky information

model from the sticky price restrictions as can be readily seen by setting κ→∞ in our

table 1 and comparing the columns. Hence, rejecting our more conservative bounds on
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monetary policy to deliver a unique, stable equilibrium is not a consequence of preferring

one New (or “Old”) Kenyesian model over another, but rather of positing a stable long

run tradeoff between output and inflation in the derivation of long run consequences of

monetary policy.

Consider now the rule with interest rate smoothing

Rt = ρRRt−1 + (1−ρR)
[
φπE tπt+ j +φy

(
αyE t yt+m + (

1−αy
)
E t∆yt+m

)]
(125)

0≤ ρR < 1 allows for interest rate smoothing along with the generality of varying horizons

and measures of real activity in (123).

Theorem 11 (Inattentiveness and the General Taylor Rule with Interest Rate Smoothing).

An inattentiveness model, given by (31), (68), or (70) on the supply side; (76) on the demand

side; and the general Taylor rule with interest rate smoothing (125) for monetary policy

has a unique, stable equilibrium if and only if

(1) indeterminacy if φπ < 1

(2) indeterminacy if 1+ρR
1−ρR

<φπ and j > 0

(3) nonexistence if 1+ρR
1−ρR

<φπ and j < 0

(4) determinacy if 1<φπ and j = 0

(5) determinacy if 1<φπ < 1+ρR
1−ρR

and j = 1

Proof. See the appendix. □

Again, we see more restrictive bounds on monetary policy than in the sticky price model

(see table 1). There is, however, a broadening of the strict interpretation of the Taylor

principle as the history dependence of monetary policy through interest rate smoothing

implies responses to the contemporaneous inflation rate at differing horizons of inflation

targeting. This can be seen via the simplified one period inflation horizon version Rt =
ρRRt−1 + (1−ρR)

[
φπE tπt+1

]= (1−ρR)φπ
[
E tπt+1 +ρRE t−1πt + ...

]
which clearly imparts

the interest rate rule with a concern for current inflation (precisely past expectations

thereof). This broadening, however, is limited sharply by the degree of history dependance

by the upper bound. As in the analysis of the sticky price model by Lubik and Marzo

(2007), sunspots need not be monotonic or constant, but may also be oscillating and a too

strong a response to future expected inflation in the presence of interest rate smoothing

is consistent with such non monotonic sunspots. At higher horizons of future inflation

expectations, this window of determinacy collapses.
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8. CONCLUSION

We have derived determinacy bounds on monetary policy when the long run Phillips

curve is vertical. In contrast to the sticky price model, we find that only the coefficients in

the Taylor rule itself with respect to current inflation matter for determinacy. If the long

run Phillips curve is vertical, no amount of output gap targeting, forward or backward-

looking inflation targeting can substitute for a more than one-for-one response to current

inflation directly. Policy makers with a concern for robustness and who are unwilling to

positing a specific, stable long run tradeoff between output and inflation in the derivation

of this long run consequence of monetary policy might prefer our conservative bounds.

Furthermore, our bounds are simple, also provide determinacy in sticky price models and

are well known: heed the Taylor principle and react to current inflation more than one for

one.

We have shown this with two specific models, the sticky information model of Mankiw

and Reis (2002) and the imperfect common knowledge model of Nimark (2008), the

former by formulating it as a recursion in the frequency domain and applying the z-

transform proposed by Whiteman (1983) and the latter by identifying a time domain

recursion by defining a higher order expectation operator. By doing so we bypassed

the need of expanding the model’s state space or solving for an infinite sequence of

undetermined MA(∞) coefficients or higher order expectations.The transformations of the

models separate the long-run dynamic relationships between variables that establish the

determinacy properties from sequences of forecasting errors analogously to the separation

of the homogenous component of a difference equation relation from the particular solution.

We then examine a non specific model of information rigidity that is specified only as

imposing the natural rate hypothesis at some horizon, confirming the generality of our

results. The paper thereby has added to the ongoing research on solving macroeconomic

models in the frequency domain and policy relevant implications of information frictions.
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APPENDIX A. ESSENTIAL FREQUENCY DOMAIN PROPERTIES OF DISCRETE TIME SERIES

To lay out the analysis, we present an (incomplete) introduction of the relevant frequency domain

properties for our analysis.37 Whiteman (1983) assumes, and we follow, that solutions for yt are sought in the

space spanned by time-independent square-summable linear combinations of the process(es) fundamental

for the driving process, that is H2 or Hardy space.38 Let ϵt be such a mean zero fundamental process with

variance σ2
ϵ . Then an H2 solution for an endogenous variable, yt, is of the form

yt = y(L)ϵt =
∞∑
j=0

yjϵt− j (A.1)

with
∑∞

j=0 y2
j <∞ and L the lag operator Lyt = yt−1.39 Following, e.g., Sargent (1987a, ch. XI) the Riesz-

Fischer Theorem gives an equivalence (a one-to-one and onto transformation) between the space of squared

summable sequences
∑∞

j=0 y2
j <∞ and the space of analytic functions in unit disk y(z) corresponding to the

z-transform of the sequence, y(z)=∑∞
j=0 yj z j.

Given a discrete series yj its z-transform y(z) is defined as

y(z)=
∞∑
j=0

yj z j (A.2)

where z is a complex variable, and the sum extends from 0 to infinity, following the convention used in

Hamilton (1994, ch. 6) and Sargent (1987a, ch. XI).40 By evaluating the z-transform on the unit circle in the

complex plane (z = e−iω, where ω is the angular frequency and i the complex number
p−1), we obtain the

discrete-time Fourier transform

y(e−iω)=
∞∑
j=0

yj e−iω j (A.3)

The connection between the autocovariance function and the Fourier transformation of the z-transform

evaluated on the unit circle (z = e−iω)

Ry(m)= σ2
ϵ

2π

∫ π

−π

∣∣∣y(e−iω)
∣∣∣2 eimωdω (A.4)

This relationship allows us to analyze the temporal dependencies in a time series. By leveraging the

z-transform and Fourier transform, along with the calculations of autocovariance and autocorrelation, we

37See the online appendix for a more complete representation theorem which we forgo here for expediency.
38See, e.g., Han, Tan, and Wu (2022) for a more formal introduction.
39Note that we are abusing notation somewhat and choosing to use the same letter y to refer to a

discrete time series, yt, as well as that variable’s transform function y(z) or MA representation/response

to a fundamental process j periods ago, yj. This serves to save on the verbosity of notation, which might

otherwise read yt =∑∞
j=0δ

y
j ϵt− j following, e.g., Meyer-Gohde (2010).

40The discrete signal processing and systems theory literature works in negative exponents of z, see

Oppenheim, Schafer, and Buck (1999, ch. 3) and Oppenheim, Willsky, and Nawab (1996, ch. 10). Al-Sadoon

(2020) follows this convention and interprets the operator being applied as the forward operator. We

maintain the more familiar approach in working with the lag operator which results in our use of positive

exponents in z.
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will uncover the frequency content and temporal dynamics of discrete-time series that are subject to sticky

information.

To see the content of the spectral representation and, in particular, how scaling in the z domain affects a

series autocovariance, we will examine an AR(1) example41

yt = ρyt−1 +ϵt (A.5)

where yt is the current value of the process, yt−1 is the previous value, ρ is the autoregressive parameter

assumed less than one in absolute value, and ϵt is the white noise error term at time t with standard

deviation σϵ. The infinite MA representation is given by

yt =
∞∑
j=0

ρ jϵt− j =
( ∞∑

j=0
ρ jL j

)
ϵt (A.6)

where L is again the lag operator (Lϵt = ϵt−1). This gives us (A.2) with yj = ρ j and L = z an operator defined

on the unit circle.

We can use the z-transform and Fourier transformation to calculate the autocovariance of our AR(1)

process. Taking the z-transform of both sides of (A.5), we have

y(z)= ρzy(z)+1 ⇒ y(z)= 1
1−ρz

(A.7)

where y(z) is the z-transform of the AR(1) transfer function. Now, we can calculate the autocovariance using

the square of the absolute value of the Fourier transform of the transfer function as in (A.4). Accordingly,

Ry(m) can be expressed as

Ry(m)= σ2
ϵ

2π

∫ π

−π

∣∣∣y(e−iω)
∣∣∣2 eimωdω= σ2

ϵ

2π

∫ π

−π

∣∣∣∣ 1
1−ρe−iω

∣∣∣∣2 eimωdω (A.8)

which can be written as a contour integral along the unit circle parameterized by ζ= eiω

Ry(m)= σ2

2πi

∮
|ζ|=1

ζm−1

(1−ρζ−1)(1−ρζ) dζ= σ2

2πi

∮
|ζ|=1

ζm

(ζ−ρ)(1−ρζ) dζ (A.9)

which can be evaluated by residues42 for m ̸= 0. The function ζm−1/
∣∣1−ρζ−1∣∣2 has a simple pole inside the

contour (unit circle) at ζ= ρ. The residue at ζ= ρ is:

Resζ=ρ
[
ζm−1/

∣∣1−ρζ−1∣∣2]
=Resζ=ρ

[
ζm/

(
(ζ−ρ)(1−ρζ))]= ρm/(1−ρ2) (A.10)

which gives the autocovariance function of yt as

Ry(m)=σ2 ×Resζ=ρ =σ2ρm/(1−ρ2) (A.11)

The same value we would obtain using time domain methods.

Figure 2 plots the (absolute value of the) transfer function |y(z)| , |z| ≤ 1 for two values of ρ. In figure 2a,

the absolute value of the transfer function is plotted with ρ = 0.9 and in figure 2b with the autoregressive

41See the appendix for an additional ARMA(2,2) example.
42The residue of a function f (ζ) at a pole ζ0 of order k is given by Resζ=ζ0 [ f (ζ)] =

1
(k−1)! limζ→ζ0

dm−1

dζm−1

(
(ζ−ζ0)k f (ζ)

)
and the contour integral along γ is 1

2πi
∮
γ f (ζ)dζ=∑

j Resζ=ζ j [ f (ζ)] where

the sum is over all the singularities - ζ j - enclosed by γ, see Ahlfors (1979, ch. 4.5).
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(A) |y(z)|: yt = ρyt−1 +ϵt (B) |y(z)|: yt =λρyt−1 +ϵt

(C) |y(z)||z|=1: yt = ρyt−1 +ϵt (D) |y(z)||z|=1: yt =λρyt−1 +ϵt

FIGURE 2. AR(1) - Transfer Functions on the Unit Disk

The values ρ = 0.9 and λ= 0.7 were used

parameter dampened by λ= 0.7. The values on the unit circle can be found in the lower two panels, figures

2c and 2d, which can be used in (A.8) to determine the autocovariances.

Among the properties of the z-transform - see, e.g., Oppenheim, Schafer, and Buck (1999, ch. 3) and Op-

penheim, Willsky, and Nawab (1996, ch. 10), the one that will be both particularly relevant for interpreting

sticky information in the next section (and is less known to economists) is that of scaling in the z domain.

Proposition 1 tells us that multiplying a sequence with a given region of convergence and set of poles and

zeros by an exponential sequence in λ scales the region of convergence and the poles and zeros of y by λ.

Proposition 1 (Scaling in the z domain). Given a z-transform of a sequence with a region of convergence R

y(z)=
∞∑
j=0

yj z j (A.12)

the scaled sequence

y(λz)=
∞∑
j=0

yjλ
j z j (A.13)
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has a region of convergence R/|λ| and if y(z) has a pole (or zero) at a, then y(λz) has a pole (or zero) at λa.

Proof. See Oppenheim, Willsky, and Nawab (1996, p. 768) and note the difference in convention with the

signal processing literature developing series in the inverse of z in contrast to the time series literature -

e.g., Sargent (1987a, ch.XI) and Hamilton (1994, ch. 6). □

To understand the effects of scaling in the frequency domain, consider the following example. Let At be

a mean zero, linearly regular covariance stationary stochastic process with known Wold representation

given by

At = A(L)ϵt =
∞∑

i=0
aiϵt−i =

∞∑
i=0

aiLiϵt (A.14)

Compare this with the process

Bt = A(λL)ϵt =
∞∑

i=0
aiλ

iϵt−i =
∞∑

i=0
ai (λL)i ϵt (A.15)

The autocovariance of At is given by

cA(h)=
∞∑

i=−∞
aiai+hσ

2
ϵ (A.16)

and of Bt by

cB(h)=
∞∑

i=−∞
λiaiλ

i+hai+hσ
2
ϵ =λh

∞∑
i=−∞

λ2iaiai+hσ
2
ϵ (A.17)

Inspection shows that for 0<λ< 1, cB(h)< cA(h) and that cB(h) is decreasing in h at a rate λ.

This is directly exemplified by the AR(1) process above. Figure 2 plots |y(z)| for yt = ρyt−1 + ϵt in the

left panels and |y(λz)| on the right. Notice that the entire transfer function inside the closed unit disk for

yt =λρyt−1 +ϵt can be found as the transfer function of yt = ρyt−1 +ϵt inside the circle with radius λ. That

is, λ scales the transfer function and in this case with |λ| < 1 towards the origin - that is, away from the

unconditional response |y(1)| to shocks at all time horizons and towards the impact response |y(0)| of the

process to contemporaneous shocks.

The final and, for our determinacy analysis later, crucial property to observe is that this dampening

is not bidirectional. If |y(z)| is well defined (analytic) on the unit disk, so too will |H(λz)| be for |λ| < 1.

Defining z̃ = λz, |y(z̃)| being well defined (analytic) on the unit disk does not allow us conclude the same

about |y( 1
λ

z̃)| for |λ| < 1, as 1
λ

z̃ goes past the unit circle. That is, following Proposition 1, λ scales the region

of convergence and if the process defined by y(z) has a region of convergence from the origin out to the unit

circle, then the process associated with H( 1
λ

z) has a region of convergence out only to |λ| < 1.

APPENDIX B. FREQUENCY DOMAIN SOLUTION OF FORWARD-LOOKING MODELS

Having laid out the basic properties and paid specific attention to the scaling in the z domain property,

we now turn to solving rational expectations models in the frequency domain following Whiteman (1983) -

see also Taylor (1986, ch. 2.3) for an approachable introduction with direct comparisons to other methods.

Starting with expectations, the Wiener-Kolmogorov prediction formula gives us E t [yt+n] =
E t

[∑∞
j=0 yjϵt− j+n

]
= ∑∞

j=0 yj+nϵt− j. The Wiener-Kolmogorov prediction formula of “plussing” gives the
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frequency domain version

Z {E t[xt+1]}=
[

x(z)
z

]
+
= 1

z
(x(z)− x(0)) (B.18)

where + is the annihilation operator, see Sargent (1987a) and Hamilton (1994).

Consider a backward and forward looking model in yt and ϵt

aE t yt+1 +byt + cyt−1 +ϵt = 0 (B.19)

The same process is presented in the z domain as

a
1
z

(y(z)− y0)+by(z)+ czy(z)+1= 0 (B.20)

Rearranging allows us to reduce the solution to this model as

a(y(z)− y0)+bzy(z)+ cz2 y(z)+ z = 0⇔ (a+bz+ z2)y(z)= ay0 − z (B.21)

(a−a(λ1 +λ2)z+aλ1λ2z2)y(z)= ay0 − z ⇔ (1−λ1z)(1−λ2z)y(z)= y0 − z
a

(B.22)

with the initial condition on y0 to be determined.

We will require that y(z) be analytic inside the unit disk to give us a stable process yt causal in ϵt.

Consider now the following possibilities. If |λ1|, |λ2| < 1, then there is no singularity in y(z) inside the unit

circle that can be removed to pin down y0 and, we find that (1−λ1L)(1−λ2L)yt =
(
y0 − L

a
)
ϵt is necessarily

unstable as at most one of the two unstable autoregressive factors (1−λkL) could be removed by a particular

choice of y0 - that is, we have non existence of a stable solution. If, however, |λ1|, |λ2| > 1, there are two

singularities in y(z) inside the unit circle and y0 cannot be uniquely determined so there are multiple

stable solutions - that is, we have indeterminacy. If however, |λ2| < 1< |λ1|, there is one singularity in y(z)

inside the unit circle, namely at z = 1/λ1, and using the residue theorem43 it can be removed to ensure the

analyticity of y(z) over the unit disk by setting the boundary condition on y0 as

lim
z→ 1

λ1

(1−λ1z)(1−λ2z)y(z) != 0= y0 − 1
λ1a

⇒ y0 = 1
λ1a

(B.23)

which determines the unique stable solution for the process on y(z) as

y(z)= 1
1−λ1z

1
1−λ2z

1
a

(
1
λ1

− z
)
= 1

1−λ2z
1
λ1a

= 1
λ1a

1
1−λ2z

(B.24)

Substituting the lag operator for z to express in the time domain gives us

yt = 1
λ1a

1
1−λ2L

ϵt ⇒ yt =λ2 yt−1 + 1
λ1a

ϵt (B.25)

Hence our requirement that one root be inside and one outside the unit circle gives us the famed Blanchard

and Kahn (1980) condition. Underlining the point that deriving the condition in either time or frequency

domain neither alters the model itself or the associated conditions for determinacy, but simply allows us to

determine unique solutions and boundary conditions of models with a different tools.

43See Ahlfors (1979, ch. 4).
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APPENDIX C. RECURSIVE REPRESENTATION OF THE IMPERFECT COMMON KNOWLEDGE PHILLIPS

CURVE

The main text derived the recursive representation using the average higher order expectations operator

we defined as Hsxt ≡
∫

E [xt|Is( j)]d j. Here we derive the recursive representation using an alternative

route. Begin with the Phillips curve (48)

πt = (1−θ)
(
1−βθ) ∞∑

k=0
(1−θ)k mc(k)

t|t +βθ
∞∑

k=0
(1−θ)kπ(k+1)

t+1|t (C.26)

Calculate the average higher order expectation of πt, π(1)
t|s ≡

∫
E [πt|Is( j)]d j∫

E [πt|Is( j)]d j =
∫

E

[
(1−θ)

(
1−βθ) ∞∑

k=0
(1−θ)k mc(k)

t|t +βθ
∞∑

k=0
(1−θ)kπ(k+1)

t+1|t

∣∣∣∣∣Is( j)

]
d j (C.27)

π(1)
t|s = (1−θ)

(
1−βθ) ∞∑

k=0
(1−θ)k

∫
E

[
mc(k)

t|t
∣∣∣Is( j)

]
d j (C.28)

+βθ
∞∑

k=0
(1−θ)k

∫
E

[
pi(k+1)

t+1|t
∣∣∣Is( j)

]
d j (C.29)

π(1)
t|s = (1−θ)

(
1−βθ) ∞∑

k=0
(1−θ)k mc(k+1)

t|t +βθ
∞∑

k=0
(1−θ)kπ(k+2)

t+1|t (C.30)

multiply with (1−θ) and compare with (C.26)

(1−θ)π(1)
t|s = (1−θ)

(
1−βθ) ∞∑

k=1
(1−θ)k mc(k)

t|t +βθ
∞∑

k=1
(1−θ)kπ(k+1)

t+1|t (C.31)

=πt − (1−θ)
(
1−βθ)

mct −βθπ(1)
t+1|t (C.32)

or

πt − (1−θ)π(1)
t|s = (1−θ)

(
1−βθ)

mct +βθπ(1)
t+1|t (C.33)

which gives (53) in the main text.

APPENDIX D. PROOF THEOREM 8

By the Wold theorem,44 any stationary process can be represented as

X t =
∞∑

l=0
θlϵt−l +Ξt, where Eϵt = 0 and Eϵtϵ

′
t+ j = 0, ∀ j ̸= 0 (D.34)

and Ξt is an orthogonal linearly deterministic process, forecastable perfectly from its own history. Starting

with the indeterministic part,and inserting into (117)

0=
n∑

j=0

[ ∞∑
l=0

(
min(p,l)∑

i=0
Q(i, j)

)
θl+ jϵt−l

]
+

m∑
j=1

[ ∞∑
l=0

(
min(p,l+ j)∑

i=0
Q(i, j)

)
θlϵt−l− j

]
(D.35)

Using the definition of Q̃(i, j) yields

0=
n∑

j=0

[ ∞∑
l=0

Q̃(l, j)θl+ jϵt−l

]
+

m∑
j=1

[ ∞∑
l=0

Q̃(l+ j, j)θlϵt−l− j

]
(D.36)

This must hold for all realizations of ϵt. Comparing coefficients yields

0=
n∑

j=0
Q̃(l, j)θl+ j +

m∑
j=1

Q̃(l, j)θl− j (D.37)

44See, e.g., Sargent (1987a, pp. 286–290), as well as Priestley (1981, pp. 756–758).
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a time-varying system of difference equations with initial conditions
∑m

j=1θ− j = 0. But as Q̃(p+ i, j) =
Q̃(p, j), ∀i ≥ 0, the system of difference equations has constant coefficients, after and including p. This

system can be written as (118) and coincides with Anderson’s (2010) canonical form. If the solution to this

system is unique, its stable solution can be written as

θl = B
[
θ′l−m . . . θ′l−1

]′
, ∀l ≥ p (D.38)

The first p (block) equations—remembering the initial conditions—can be gathered into

Q
[
θ′0 . . . θ′n+p−1

]′
= 0 (D.39)

giving 3p equations in 3(p+n) variables. (D.38) yields 3n more equations that deliver

B
[
θ′0

... θ′n+p−1

]′
= 0 (D.40)

stacking the two yields (119).45

The system (D.37) is homogenous. Thus, one stationary solution is given by θl = 0, ∀i, the fundamental

solution in the absence of exogenous driving forces. If (119) is invertible and if (118) is saddle-point stable,

then this is the only stationary solution.

Only Ξt remains. Inserting it into (117), it follows that this can also be written as (118). If there is a

unique solution in past values of Ξt, the solution can be written in the same form as (D.38), which must be

zero when taken to its remote past from the stability of (D.38).

APPENDIX E. EXAMPLE OF SINGULAR INFORMATION STRUCTURE IN THEOREM 8

The first condition theorem 8 requires that the model be determinate if the information rigidity were

removed and the second requires that one can uniquely resolve the prediction errors, which would only

fail to hold due to the non-singularity of the matrix
[
Q′ B′

]′
. While this cannot be guaranteed due to the

generality of the class of models specified in (117), there is nothing in the class of models to induce this

matrix to be singular in general. Even if one should encounter a parameterization that leads to singularity,

a minor pertubation of the model or its parameterization should generally lead to non-singularity.

A simple, univariate example will illustrate. Consider the following system

aE t [θt+1]= bθt + cE t−1 [θt] (E.41)

In the absence of expectations, that is in the form of (118), the equation reduces to

aθt+1 = (b+ c)θt (E.42)

which is saddle-point stable if | b+c
a | > 1. But the original equation does have expectations and, indeed,

lagged expectations that need to be resolved. Taking expectations of (E.41) at the highest expectational lag

(here t−1) yields

aE t−1 [θt+1]= (b+ c)E t−1 [θt] (E.43)

45This extends Meyer-Gohde’s (2010, p. 987) Equation (12) to Anderson’s (2010) higher leads and lags.
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defining θ̃t−1 = E t−1 [θt], inserting into the above and lagging forward yields

aE t
[
θ̃t+1

]= (b+ c) θ̃t (E.44)

an equation whose saddle-point properties are the same as (E.42). Thus, if | b+c
a | > 1, there is a unique stable

solution. As the system is homogenous, this is θ̃t = 0. Recalling the definition of θ̃t and inserting into (E.41)

yields

0= bθt (E.45)

Consider now the special case b = 0: the foregoing does not deliver a unique solution for θt, even though the

condition for saddle-point stability, now | c
a | > 1, can still be fulfilled. Of course, b = 0 is a special case and it

need not hold generally: hence, an isolated singularity.

APPENDIX F. PROOF OF THEOREM 10

Take the IS equation (4) and express it in the frequency domain

y(z)= 1
z

(y(z)− y0)−σR(z)+σ1
z

(π(z)−π0) (F.46)

do the same with the Taylor rule in (123)

R(z)=φπz− j

(
π(z)−

j−1∑
k=0

πk zk

)
+φyz−m

(
ỹ(z)−

m−1∑
k=0

ỹk zk

)
(F.47)

where ỹ(z)= (1− (1−α) z) y(z). Now combine the two

1− z
z

y(z)− 1
z

y0 =σ
(
φπz− j

(
π(z)−

j−1∑
k=0

πk zk

)
+ z−mφy

(
ỹ(z)−

m−1∑
k=0

ỹk zk

))
−σ1

z
(π(z)−π0) (F.48)

collecting terms(
φπz1− j −1

)
π(z)= 1

σ
(1− z) y(z)− 1

σ
y0 −φyz1−m

(
z ỹ(z)−

m−1∑
k=0

ỹk zk

)
+φπz1− j

j−1∑
k=0

πk zk +π0 (F.49)

Now recall that y(z) follows from π(λz) and further dampened (as 0<λ< 1) inflation

y(z)= 1
ξ

∞∑
j=1

λ j

1−λ j z
π(λ j z) (F.50)

Hence, given π(λ j z); j > 0, y(z) and all yk ≡ (
dk y(z)/dzk) |z=0 follow from (F.50).

Note that (F.49) defines π(z) with roots z : φπz1− j −1 = 0. For a given root, call it z(1), (F.49) implies

roots for π(λk z) as z :φπ
(
λk z

)1− j −1= 0 ⇒φπλ
k(1− j)z1− j −1= 0. Corresponding to z(1) is the root for π(λk z),

call it λk z(1). So λk z(1) solves φπλk(1− j)λk z(1)
1− j −1 = 0 and z(1) solves φπz(1)

1− j −1 = 0. Inspection shows

that the roots are related via λk z(q) = λk z(q), for q = 1,2, .. # of roots. Now (F.49) has ỹ(z) and y(z) on the

right hand side which, via (F.50) and the definition of ỹ(z), are linear functions of π(λ j z); j > 0 and it

follows that a root π(z) on the left hand side, z : φπz1− j −1 = 0, corresponds to a root on the right hand

side in the terms π(λ j z); j > 0. That is, extending π(z) by removing a singularity at a root z(q) removes

the corresponding singularity in π(λk z) via π(z)|
z=z(q) =π(λk z)|

z=z(q) which is evaluating π(λk z) at its root

λk z(q) as λk z(q) = λk z(q). Hence, eliminating roots inside the unit circle allows (F.49) to define π(z) as an

analytic function - and thus also y(z) via (F.50) - over the unit disk. That is, the long run verticality of the

Phillips curve (F.50) or independence of y(z) from π(z) on the unit circle translates the singularities in π(z)
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to singularities in y(z) - via π(λk z). The elimination of singularities follows thus only via the independent

consideration of singularities in π(z).

Rewritting (F.49)

(
φπz1− j −1

)
π(z)=φπz1− j

j−1∑
k=0

πk zk −π0 + t.i.d. (F.51)

where t.i.d. refers to “terms independent of determinacy" following the discussion above. This allows us to

easily declinate the problem into the number of roots.

For j < 1, the summation on the right hand side is empty

(
φπz1− j −1

)
π(z)=π0 + t.i.d. (F.52)

therefore only one constant, π0, needs to be determined. That is, the polynomial φπz1− j −1= 0 must have

one and only one z inside the unit circle for the system to be determinate, for π0 to be set to remove the

singularity at the root inside the unit circle so that π(z) (and hence y(z)) is an analytic function over the

unit disk. If there are no roots inside the unit circle, then π0 cannot be pinned down and the system is

indeterminate. If there is more than one root inside the unit circle, then there are not enough constants

that can be set to eliminate the singularities to render π(z) (and hence y(z)) analytic functions over the

entire unit disk. The roots are given by

z =
(

1
φπ

) 1
1− j

(F.53)

If 1<φπ, then all 1− j roots are inside the unit circle. If 0<φπ < 1, then all 1− j roots are outside the unit

circle. This gives the following
for j = 0, 1− j = 1 root inside the unit circle if and only if 1<φπ
for j < 0, 1− j > 1 roots inside/outside the unit circle if 1<φπ / 0<φπ < 1

(F.54)

For j ≥ 1, (F.49) becomes

(
φπ− z j−1

)
π(z)=φπ

j−1∑
k=0

πk zk + z j−1π0 + t.i.d. (F.55)

and therefore j constants, {πk}k=0,1,..., j−1, need to be determined. That is, the polynomial φπ− z j−1 = 0 must

have j roots inside the unit circle for the system to be determinate, for {πk}k=0,1,..., j−1 to be set to remove

the singularity at the roots inside the unit circle so that π(z) (and hence y(z)) is an analytic function over

the unit disk. If there are fewer roots inside the unit circle, then not all of {πk}k=0,1,..., j−1 cant be pinned

down and the system is indeterminate. If there are more than j roots inside the unit circle, then there are

not enough constants that can be set to eliminate the singularities to render π(z) (and hence y(z)) analytic

functions over the entire unit disk. The polynomial φπ− z j−1 = 0 is of order j−1 and, hence, has j−1< j

roots following from the fundamental theorem of algebra. That is{
for j ≥ 1, less than j roots inside the unit circle (F.56)

Summarizing over the cases yields theorem 10 and the lower panel of figure 1.



INATTENTIVENESS AND THE TAYLOR PRINCIPLE 57

APPENDIX G. PROOF OF THEOREM 11

Rouché’s theorem, also at the foundation of familiar Schur-Cohn (Woodford, 2003; Lubik and Marzo,

2007) and Jury conditions, will be used in the following and is worth repeating here

Theorem 12 (Rouché’s Theorem). Let f and g be holomorphic in an open region containing the closure of

the unit disk, such that g does not vanish on the unit circle. If | f (z)| < |g(z)| on the unit circle, then f and

f + g have the same number of zeros, counting multiplicities, inside the unit circle.

Proof. See Ahlfors (1979, pp. 152-154) □

The Taylor rule in (125) in the frequency domain is

(
1−ρR z

)
R(z)= (

1−ρR
)[
φπz− j

(
π(z)−

j−1∑
k=0

πk zk

)
+φyz−m

(
ỹ(z)−

m−1∑
k=0

ỹk zk

)]
(G.57)

where again ỹ(z)= (1− (1−α) z) y(z). Combining this with the IS equation (F.46) then gives

1− z
z

y(z)− 1
z

y0 =σ
(
1−ρR

)(
1−ρR z

) [
φπz− j

(
π(z)−

j−1∑
k=0

πk zk

)
+φyz−m

(
ỹ(z)−

m−1∑
k=0

ỹk zk

)]
−σ1

z
(π(z)−π0) (G.58)

collecting terms(
1−ρR z− (

1−ρR
)
φπz1− j

)
π(z) (G.59)

=(
1−ρR z

)
π0 −

(
1−ρR

)
φπz1− j

j−1∑
k=0

πk zk − 1−ρR z
σ

y0 −
(
1−ρR

)
φyz1−m

m−1∑
k=0

ỹk zk (G.60)

+
[(

1−ρR z
)
(1− z)

1
σ
+ (

1−ρR
)
φyz1−m (1− (1−α) z)

]
y(z) (G.61)

Now recall that y(z) follows from π(λz) and further dampened (as 0<λ< 1) inflation, see (F.50), hence, y(z)

and all yk ≡ (
dk y(z)/dzk) |z=0 follow from (F.50) given π(λ j z); j > 0.

Note that (G.59) defines π(z) with roots z : 1−ρR z− (
1−ρR

)
φπz1− j = 0. Following the proof of theorem

10 above, extending π(z) by removing a singularity at a root z(q) removes the corresponding singularity in

π(λk z) via π(z)|
z=z(q) = π(λk z)|

z=z(q) which is evaluating π(λk z) at its root λk z(q) as λk z(q) = λk z(q). Hence,

eliminating roots inside the unit circle allows (G.59) to define π(z) as an analytic function - and thus also y(z)

via (F.50) - over the unit disk. That is, the long run verticality of the Phillips curve (F.50) or independence

of y(z) from π(z) on the unit circle translates the singularities in π(z) to singularities in y(z) - via π(λk z).

The elimination of singularities follows thus only via the independent consideration of singularities in π(z).

Rewritting (G.59)

(
1−ρR z− (

1−ρR
)
φπz1− j

)
π(z)= (

1−ρR z
)
π0 −

(
1−ρR

)
φπz1− j

j−1∑
k=0

πk zk + t.i.d. (G.62)

where t.i.d. refers to “terms independent of determinacy" following the discussion above. This allows us to

easily declinate the problem into the number of roots.

For j ≤ 1, the right hand side is in π0 (that is, the summation on the right hand side contains at most a

term in π0 ) (
1−ρR z− (

1−ρR
)
φπz1− j

)
π(z)= [

1−ρR z−1 j=1
(
1−ρR

)]
π0 + t.i.d. (G.63)
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where 1 j=1 is the indicator function, equal to 1 if j = 1 and 0 otherwise; therefore only one constant, π0,

needs to be determined. That is, the polynomial 1−ρR z− (
1−ρR

)
φπz1− j = 0 must have one and only one z

inside the unit circle for the system to be determinate, for π0 to be set to remove the singularity at the root

inside the unit circle so that π(z) (and hence y(z)) is an analytic function over the unit disk. If there are no

roots inside the unit circle, then π0 cannot be pinned down and the system is indeterminate. If there is

more than one root inside the unit circle, then there are not enough constants that can be set to eliminate

the singularities to render π(z) (and hence y(z)) analytic functions over the entire unit disk.

For j = 1

For j = 1, the polynomial becomes 1−ρR z− (
1−ρR

)
φπ = 0 and the root is given by z = 1−(1−ρR)φπ

ρR
. Hence,

the system is determinant if
∣∣∣ 1−(1−ρR)φπ

ρR

∣∣∣< 1 or 1<φπ < 1+ρR
1−ρR

and indeterminant otherwise.

For j = 0

For j = 0, the polynomial becomes 1−ρR z− (
1−ρR

)
φπz = 0 and the root is given by z = 1

ρR+(1−ρR)φπ . Hence,

the system is determinant if
∣∣∣ 1
ρR+(1−ρR)φπ

∣∣∣< 1 or 1<φπ and indeterminant otherwise.

For j < 0

For j < 0, the polynomial becomes 1−ρR z− (
1−ρR

)
φπzk for k = 1− j > 1. To bound the number of zeros

using Rouché’s theorem, theorem 12 above, we will factor this polynomial to have the leading term in zk

monic and define its inverse polynomial. Accordingly, (G.63) can be factored as

−(
1−ρR

)
φπ

(
zk + ρR

1−ρR

1
φπ

z− 1
1−ρR

1
φπ

)
π(z)= [

1−ρR z−1 j=1
(
1−ρR

)]
π0 + t.i.d. (G.64)

and the relevant polynomial becomes zk+ ρR
1−ρR

1
φπ

z− 1
1−ρR

1
φπ

. Define f (z)≡ zk and g(z)≡ ρR
1−ρR

1
φπ

z− 1
1−ρR

1
φπ

.

The polynomial f (z) has k zeros inside the unit circle (k zeros at the origin to be precise) and as

min | f (z)||z|=1 >max |g(z)||z|=1 ⇒ 1> 1
1−ρR

1
φπ

max
∣∣1−ρR z

∣∣|z|=1 ⇒ 1> 1+ρR

1−ρR

1
φπ

(G.65)

Then for φπ > 1+ρR
1−ρR

, the polynomial f (z)+ g(z) (our relevant polynomial zk + ρR
1−ρR

1
φπ

z− 1
1−ρR

1
φπ

above) has

the same number of roots as f (z) inside the unit circle by virtue of Rouché’s theorem, theorem 12 above.

That is, the relevant polynomial has k = 1− j > 1 roots inside the unit circle which means there are too

many roots inside the unit circle and hence there are not enough constants that can be set to eliminate

the singularities to render π(z) (and hence y(z)) analytic functions over the entire unit disk. We have

nonexistence of a stationary solution.

Consider now the system using the reverse polynomial of 1−ρR z− (
1−ρR

)
φπzk, i.e., with z̃ ≡ 1/z(

z̃k −ρR z̃k−1 − (
1−ρR

)
φπ

)
π(1/z̃)=

[
z̃k (

1−1 j=1
(
1−ρR

))−ρR z̃k−1
]
π0 + t.i.d. (G.66)

For determinacy, we must have one and only one z inside the unit circle which translates to all but one (that

is k−1) z̃ inside the unit circle. Define f (z̃)≡ z̃k−ρR z̃k−1 = z̃k−1 (
z̃−ρR

)
. As |ρR | < 1, f (z̃) has k zeros inside

the unit circle (one at ρR and k−1 at the origin). Define as well g(z̃)≡−(
1−ρR

)
φπ. As |g(z̃)| = (

1−ρR
)
φπ

and min | f (z̃)||z̃|=1 = 1−ρR it follows that

min | f (z̃)||z̃|=1 >max |g(z̃)||z̃|=1 ⇒ 1−ρR > 1−ρRφπ⇒φπ < 1 (G.67)

Thus for φπ < 1, the polynomial f (z̃)+ g(z̃) (our relevant polynomial z̃k −ρR z̃k−1−(
1−ρR

)
φπ above) has the

same number of roots as f (z̃) inside the unit circle by virtue of Rouché’s theorem, theorem 12 above. That is,
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the relevant polynomial has k = 1− j > 1 roots inside the unit circle which translates (as z̃ ≡ 1/z) to no roots

inside the unit circle for our original polynomial 1−ρR z− (
1−ρR

)
φπz1− j. Thus we have no singularities

inside the unit circle that can be removed by pinning down the arbitrary constant π0 and hence we have

indeterminacy.

For j > 1

For j > 1, define k = j−1> 0 and (G.62) becomes(
1−ρR z− (

1−ρR
)
φπz−k

)
π(z)= (

1−ρR z
)
π0 −

(
1−ρR

)
φπz1− j

k∑
i=0

πi zi + t.i.d. (G.68)

where the right hand side is a function of π0,π1, ...πk. Hence the system has k+1 coefficients to pin down

and accordingly the polynomial 1−ρR z− (
1−ρR

)
φπz−k must have k+1 roots inside the unit circle for the

system to be determinate, for {πi}i=0,1,...,k to be set to remove the singularity at the roots inside the unit

circle so that π(z) (and hence y(z)) is an analytic function over the unit disk. If there are fewer roots inside

the unit circle, then not all of {πi}i=0,1,...,k cant be pinned down and the system is indeterminate. If there are

more than k+1 roots inside the unit circle, then there are not enough constants that can be set to eliminate

the singularities to render π(z) (and hence y(z)) analytic functions over the entire unit disk. Rewritting the

polynomial as
(
zk −ρR zk+1 − (

1−ρR
)
φπ

)
z−k and hence determinacy requires zk −ρR zk+1 − (

1−ρR
)
φπ to

have k+1 roots inside the unit circle. The polynomial zk −ρR zk+1 − (
1−ρR

)
φπ is of order k+1 and, hence,

has k+1 roots following from the fundamental theorem of algebra and therefore cannot have more than

k+1 roots. Therefore, the system will be either determinate or indeterminate.

Beginning with zk − ρR zk+1 − (
1−ρR

)
φπ and defining f (z) ≡ zk − ρR zk+1 and g(z) ≡ −(

1−ρR
)
φπ,

min | f (z)||z|=1 = 1−ρR and max |g(z)||z|=1 = (
1−ρR

)
φπ. Noticing that |ρR | < 1, f (z) has only k zeros in-

side the unit circle (k at the origin but one at 1/ρR) and

min | f (z)||z|=1 >max |g(z)||z|=1 ⇒ 1−ρR > (
1−ρR

)
φπ (G.69)

Then for φπ < 1, the polynomial f (z)+ g(z) (our relevant polynomial zk −ρR zk+1−(
1−ρR

)
φπ above) has the

same number of roots as f (z) inside the unit circle by virtue of Rouché’s theorem, theorem 12 above. That is,

the relevant polynomial has only k roots inside the unit circle which means there are too few singularities

inside the unit circle that can be removed to pin down all the constants {πi}i=0,1,...,k. We have indeterminacy

or nonuniqueness of the stationary solution.

As above, consider now the reverse polynomial with z̃ ≡ 1/z

z̃−ρR − (
1−ρR

)
φπ z̃k+1 ⇒−(

1−ρR
)
φπ

(
z̃k+1 − 1

1−ρR

1
φπ

z̃+ ρR

1−ρR

1
φπ

)
(G.70)

For determinacy, we must have k+1 roots in z inside the unit circle which translates to zero roots in z̃

inside the unit circle. Define f (z̃)≡ z̃k+1, and f (z̃) has k+1 zeros inside the unit circle (all at the origin).

Define as well g(z̃) ≡− 1
1−ρR

1
φπ

z̃+ ρR
1−ρR

1
φπ

= 1
1−ρR

1
φπ

(
ρR − z̃

)
. As | f (z̃)||z̃|=1 = 1 and max |g(z̃)||z̃|=1 = 1+ρR

1−ρR
1
φπ

,

it follows that

min | f (z̃)||z̃|=1 >max |g(z̃)||z̃|=1 ⇒ 1> 1+ρR

1−ρR

1
φπ

⇒ 1+ρR

1−ρR
<φπ (G.71)

Thus for 1+ρR
1−ρR

< φπ1, the polynomial f (z̃) + g(z̃) (our relevant polynomial

−(
1−ρR

)
φπ

(
z̃k+1 − 1

1−ρR
1
φπ

z̃+ ρR
1−ρR

1
φπ

)
above) has the same number of roots as f (z̃) inside the
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unit circle by virtue of Rouché’s theorem, theorem 12 above. That is, the relevant polynomial has k+1

roots inside the unit circle which translates (as z̃ ≡ 1/z) to no roots inside the unit circle for our original

polynomial 1− ρR z − (
1−ρR

)
φπz−k. Thus we have no singularities inside the unit circle that can be

removed by pinning down the arbitrary constants {πi}i=0,1,...,k and hence we have indeterminacy.

APPENDIX H. DETERMINACY BOUNDS IN TABLE 1

H.1. Determinacy bounds for the sticky price model with a forward-looking rule featuring a change in output

Consider the sticky price model, given by (27), (4) and the following Taylor rule:

Rt =φπE tπt+1 +∆yt+1 (H.72)

We substitute the policy rule into the IS equation (4) and put the system involving the two endogenous

variables yt,πt in the following form:

E txt+1 = c+ Axt (H.73)

where xt = [yt,πt]′, c = 0 and

A =
−σ(1−φπ)

1−σφy

β(1+σφy)+κσ(1−φπ)
β(1−σφy)0

1/β −κ/β

 . (H.74)

The characteristic equation of a 2×2 system matrix A is given by p(λ)=λ2 − tr(A)λ+det(A). Both roots of

the characteristic equation lie outside the unit circle if and only if (see LaSalle, 1986, p.28):

|det(A)| > 1 and |tr(A)| < 1+det(A),

where

det(A)=− (1−σφy)
β(1−σφy)

(H.75)

and

tr(A)=− σ(1−φπ
β(1−σφπ

− κ

β
(H.76)

Over the admissible parameter range, the determinant is strictly above one, if 1/σ<φy, so that the first

condition holds. The right-hand-side of the second condition implies that 1+φy(1+β+κ)+ 1+κ+β
σ

<φπ, while

the left-hand-side leads to φπ < 1+ κ+β
σ

−φy(1+κ+β) which provides the set of the necessary and sufficient

conditions for a unique equilibrium.

H.2. Determinacy bounds for the sticky information model with a forward-looking rule

Consider the sticky information model, given by (1), (91) and the following Taylor rule:

Rt =φπE tπt+1 (H.77)

Following theorem 11 case (5), the model has a unique, stable equilibrium if and only if

1<φπ < 1 (H.78)
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which of course is never true, such that

φπ = ∅. (H.79)

As determinacy in the model with a forward-looking interest rate is independent of output gap, the

result holds also true for other Taylor rules featuring output gap dated at any point in time, i.e. for

Rt =φπE tπt+1 + yt, Rt =φπE tπt+1 + yt+1 and Rt =φπE tπt+1 +∆yt+1.

H.3. Determinacy bounds for the sticky information model with a backward-looking rule

Consider the sticky information model, given by (1), (91) and the following Taylor rule:

Rt =φπE tπt−1 (H.80)

Following theorem 11 case (1), the model features indeterminacy if φπ < 1∀ j. Further, according to case (3)

the model equilibrium is however nonexistent if 1<φπ, j =−1, such that

φπ = ∅. (H.81)

As these results are independent of output gap, they hold true for other Taylor rules featuring output gap

dated at any point in time, i.e. for Rt =φπE tπt−1 + yt and Rt =φπE tπt−1 + yt−1.
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APPENDIX I. ONLINE APPENDICES

I.1. Frequency Domain Representation of Discrete Time Series

Here we present an (incomplete) introduction, following Priestly (1981), Ahlfors (1979), Oppenheim,

Schafer, and Buck (1999, ch. 3), Oppenheim, Willsky, and Nawab (1996, ch. 10), Hamilton (1994, ch. 6),

Sargent (1987a, ch. XI), and Shumway and Stoffer (2011) to the z-transform and discrete time Fourier

transform as it will pertain to our analysis of the determinacy of linear DSGE models. These transforms

discern the frequency content and temporal dependencies of a given sequence and, hence, can be used in

the analysis of discrete-time series. The autocovariance and autocorrelation functions play the pivotal role

in understanding the temporal relationships within a time series and the key element we will introduce

here that will be essential for understanding how the sticky information model functions in the frequency

domain is the property of scaling in the z-domain.

Our basic assumptions follow, e.g., Priestly (1981, ch. 4.11.) or Shumway and Stoffer (2011, Appendix

C), for mean zero, linearly regular covariance stationary stochastic processes with absolutely continuous

spectral distribution functions. Let yt be such a process, then

yt =
∫ π

−π
eitωdZ(ω) (I.82)

where dZ(ω) is a mean zero, random orthogonal increment process with E
[|dZ(ω)|2] = h(ω)dω and

E [dZ(ω1)dZ(ω2)∗]= 0, for ω1 ̸=ω2. Assume that the autocovariance function is absolutely summable

∞∑
m=−∞

∣∣Ry(m)
∣∣<∞ (I.83)

where the autocovariance function of a discrete-time series yt is defined as

Ry(m)=Cov(yt, yt−m)= E(yt −µy)(yt−m −µy) (I.84)

then the spectral distribution function Z(ω) is absolutely continuous such that dZ(ω)= f y(ω)dω and f y(ω)

is the spectral density given by

f y(ω)=
∞∑

m=−∞
Ry(m)e−iωh, −π≤ω≤π (I.85)

Whiteman (1983) assumes, and we follow, that solutions for yt are sought in the space spanned by

time-independent square-summable linear combinations of the process(es) fundamental for the driving

process, that is H2 or Hardy space.46 Let ϵt be such a mean zero fundamental process with variance σ2
ϵ . Its

spectral density is thus

fϵ(ω)=
∞∑

m=−∞
Rϵ(m)e−iωh = 1

2π
σ2
ϵ (I.86)

46See, e.g., Han, Tan, and Wu (2022) for a more formal introduction.
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Then an H2 solution for an endogenous variable, yt, is of the form yt = y(L)ϵt =∑∞
j=0 yjϵt− j with

∑∞
j=0 y2

j <∞
and L the lag operator Lyt = yt−1.47 Following, e.g., Sargent (1987a, ch. XI) the Riesz-Fischer Theorem gives

an equivalence (a one-to-one and onto transformation) between the space of squared summable sequences∑∞
j=0 y2

j <∞ and the space of analytic functions in unit disk y(z) corresponding to the z-transform of the

sequence, y(z)=∑∞
j=0 yj z j.

Given a discrete series yj with samples taken at equally spaced intervals, its z-transform y(z) is defined

in (A.2) as

y(z)=
∞∑
j=0

yj z j (I.87)

where z is a complex variable, and the sum extends from 0 to infinity, following the convention used in

Hamilton (1994, ch. 6) and Sargent (1987a, ch. XI).48 By evaluating the z-transform on the unit circle in the

complex plane (z = e−iω, where ω is the angular frequency and i the complex number
p−1), we obtain the

discrete-time Fourier transform (DTFT). The DTFT y(e−iω) is given by

y(e−iω)=
∞∑
j=0

yj e−iω j (I.88)

The DTFT reveals the spectral characteristics of the sequence in terms of its frequency components.

The connection between the autocovariance function and the Fourier transformation of the z-transform

evaluated on the unit circle (z = e−iω) can be established by manipulating the equations

Ry(m)=
∫ π

−π
f y(ω)eimωdω (I.89)

Hence for our mean zero fundamental process ϵt

Rϵ(m)=
∫ π

−π
fϵ(ω)eimωdω=

∫ π

−π
1

2π
σ2
ϵ eimωdω= 1

2π
σ2
ϵ

∫ π

−π
eimωdω=


σ2
ϵ for m = 0

0 otherwise
(I.90)

Now return to yt = y(L)ϵt =∑∞
j=0 yjϵt− j and recall yt =

∫ π
−π eitωdZy(ω) and analogously ϵt =

∫ π
−π eitωdZϵ(ω)

so therefore it must hold that∫ π

−π
eitωdZy(ω)=

∫ π

−π
y(eitω)eitωdZϵ(ω)⇒ dZy(ω)= y(eitω)dZϵ(ω) (I.91)

Multiplying both sides by their complex conjugates and taking expectations gives

E
[
dZy(ω)dZy(ω)∗

]= E
[

y(eitω)y(eitω)∗dZϵ(ω)dZϵ(ω)∗
]

(I.92)

47Note that we are abusing notation somewhat and choosing to use the same letter y to refer to a

discrete time series, yt, as well as that variable’s transform function y(z) or MA representation/response

to a fundamental process j periods ago, yj. This serves to save on the verbosity of notation, which might

otherwise read yt =∑∞
j=0δ

y
j ϵt− j following, e.g., Meyer-Gohde (2010).

48The discrete signal processing and systems theory literature works in negative exponents of z, see

Oppenheim, Schafer, and Buck (1999, ch. 3) and Oppenheim, Willsky, and Nawab (1996, ch. 10). Al-Sadoon

(2020) follows this convention and interprets the operator being applied as the forward operator. We

maintain the more familiar approach in working with the lag operator which results in our use of positive

exponents in z.
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(A) |y(z)|: (1 + ρ1L + ρ2L2)yt = (1 + θ1L +
θ2L2)ϵt

(B) |y(z)|: (1+λρ1L+λ2ρ2L2)yt = (1+λθ1L+
λ2θ2L2)ϵt

(C) |y(z)||z|=1: (1+ρ1L+ρ2L2)yt = (1+θ1L+
θ2L2)ϵt

(D) |y(z)||z|=1: (1+λρ1L+λ2ρ2L2)yt = (1+
λθ1L+λ2θ2L2)ϵt

FIGURE 3. ARMA(2,2) - Transfer Functions on the Unit Disk

The values ρ1 = 1.1, ρ2 =−0.28, θ1 = 0.6, θ1 =−0.25, and λ= 0.7 were used

f y(ω)=
∣∣∣y(eitω)

∣∣∣2 fϵ(ω)=
∣∣∣y(eitω)

∣∣∣2 1
2π

σ2
ϵ (I.93)

We can insert this directly into (I.89) above to yield (A.4)

Ry(m)=σ2
ϵ

1
2π

∫ π

−π

∣∣∣y(e−iω)
∣∣∣2 eimωdω (I.94)

where y(e−iω) and y∗(eiω) denote the DTFT of yj and its complex conjugate, respectively. This relationship

allows us to analyze the temporal dependencies in a time series. By leveraging the z-transform and Fourier

transform, along with the calculations of autocovariance and autocorrelation, we will uncover the frequency

content and temporal dynamics of discrete-time series that are subject to sticky information.
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I.2. AR(2) example of scaling in the z domain

While one might be tempted to dismiss the AR(1) result as a coincidence of the exponential scaling

inherently involved with an AR(1) process, examination of a more complicated process, such as an ARMA(2,2)

ought to dissuade this temptation

yt +ρ1 yt−1 +ρ2 yt−2 = ϵt +θ1ϵt−1 +θ2ϵt−2 (I.95)

Figure 3 contains the same four panels as for the AR(1) above and, again, the dampening property of |λ| < 1

is displayed. The transfer function of the ARMA(2,2) is scaled towards the origin by |λ| < 1. Comparing the

upper two panels, the scaling of the z axis instantly reveals the dampening of the associated ARMA(2,2)

on the right with L replaced by λL and by noticing that this transfer function is a subset of the original

ARMA(2,2) transfer function, out only to |λ| instead of 1.

The final, and for our determinacy analysis later crucial, property to observe is that this dampening

is not bidirectional. If |y(z)| is well defined (analytic) on the unit disk, so too will |H(λz)| be for |λ| < 1.

Defining z̃ = λz, |y(z̃)| being well defined (analytic) on the unit disk does not allow us conclude the same

about |y( 1
λ

z̃)| for |λ| < 1, as 1
λ

z̃ goes past the unit circle. That is, following Proposition 1, λ scales the region

of convergence and if the process defined by y(z) has a region of convergence from the origin out to the unit

circle, then the process associated with H( 1
λ

z) has a region of convergence out only to |λ| < 1.

I.3. Additional examples of determinacy in the frequency domain

We briefly demonstrate the requirement of analyticity of the z-transform in the frequency domain in

relation to known requirements in the time domain in order to establish intuition. Consider first an

autoregressive process of order 1, an AR(1) process:

yt = ρyt−1 +ϵt, ϵt ∼WN(0,σ2) (I.96)

which can be rewritten as

yt =
∞∑
j=0

L j yjϵt. (I.97)

The AR(1) process in the frequency domain, see above, is given by applying the z-transform:

y(z)= ρy(z)+1 (I.98)

y(z)= 1
1−ρz

(I.99)

y(z) analytic inside the unit disk if |ρ| < 1 and determines the solution to the autoregressive process.

Now consider a forward-looking process:

yt =αE t yt+1 +ϵt (I.100)

whereby the forecast can be rewritten in terms of deviations from the driving process:

E t yt+1 = yt+1 − y0ϵt+1 = 1
L

( ∞∑
j=0

L j yj − y0

)
ϵt. (I.101)

In the frequency domain the forward-looking process is described by:

y(z)=α1
z

(y(z)− y0)+1 (I.102)
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where y0 = y(0) is the value of the y at frequency 0 and simultaneously presents the initial condition of the

stationary process. To determine a solution we solve for y(z):(
1− 1

α
z
)

y(z)= y0 − z
α

(I.103)

y(z)=
(
1− 1

α
z
)−1 (

y0 − z
α

)
(I.104)

whereby y0 is not determined yet. If |α| < 1, then for z =α there is a removable singularity inside the unit

disk and we can solve for a boundary condition on y0:

lim
z→α

(
1− 1

α
z
)

y(z)= 0 (I.105)

giving rise to the initial condition of y0 = 1. The solution to our process in the frequency domain is then

determined as:

y(z)= 1− z
α

1− z
α

= 1. (I.106)

In the time domain the equivalent unique stationary solution is given by:

yt = ϵt. (I.107)

compare with Blanchard (1979).

I.4. Alternative derivation of frequency domain sticky information

We can also derive a recursive representation of the lagged expectations of the endogenous variables in

(31) as

(1−λ)
∞∑

i=0
λiE t−i−1[xt], xt =

( ∞∑
j=0

x j z j

)
ϵt (I.108)

= (1−λ)
(
E t−1[xt]+λE t−2[xt]+λ2E t−3[xt]+ ...

)
(I.109)

Applying the Wiener-Kolmogorov prediction formula to the lagged expectations (32), equation (I.109) gives

the frequency domain representation as:

(1−λ)
(
x(z)− x0 +λ(x(z)− x0 − zx1)+λ2(x(z)− x0 − zx1 − z2x2)+ ...

)
(I.110)

= (1−λ)
(
x(z)+λx(z)+λ2x(z)+ ...− x0 −λx0 −λ2x0...−λzx1 −λ2zx1...−λ2zx2...

)
(I.111)

= (1−λ)((1+λ+λ2 + ...)x(z)− (1+λ+λ2 + ...)x0 −λz(1+λ+λ2 + ...)x1 (I.112)

−λ2z2(1+λ+λ2 + ...)x2 − ...) (I.113)

= (1−λ)
(

1
1−λ x(z)− 1

1−λ x0 − λz
1−λ x1 − λ2z2

1−λ x2 − ...
)

(I.114)

= x(z)−
∞∑
j=0

λi z j x j = x(z)− x(λz) (I.115)

Hence, the lagged expectations in (I.109) can be transformed from the time into the frequency domain as:

(1−λ)
∞∑
j=0

λiE t−i−1[xt−1] = (1−λ)
(

z
1−λ x(z)− λz

1−λ x0 − (λz)2

1−λ x1 − ...
)

= zx(z)−λzx(λz) (I.116)


	1. Introduction
	2. Existence and Uniqueness: Frictionless and Sticky Prices
	3. Phillips Curves of Imperfect Information
	3.1. Phillips Curves in the Frequency Domain - Sticky Information
	3.2. Phillips Curves under Imperfect Common Knowledge
	3.3. Phillips Curves under Finite Inattentiveness
	3.4. Long Run Phillips Curves and the Natural Rate Hypothesis

	4. Existence and Uniqueness for Sticky Information
	5. Existence and Uniqueness for Imperfect Common Knowledge
	6. Existence and Uniqueness for Finite Inattentiveness
	7. Extensions
	8. Conclusion
	References
	Appendix A. Essential Frequency Domain Properties of Discrete Time Series
	Appendix B. Frequency Domain Solution of Forward-Looking Models
	Appendix C. Recursive Representation of the Imperfect Common Knowledge Phillips Curve
	Appendix D. Proof Theorem 8
	Appendix E. Example of Singular Information Structure in Theorem 8
	Appendix F. Proof of Theorem 10
	Appendix G. Proof of Theorem 11
	Appendix H. Determinacy Bounds in Table 1
	H.1. Determinacy bounds for the sticky price model with a forward-looking rule featuring a change in output
	H.2. Determinacy bounds for the sticky information model with a forward-looking rule
	H.3. Determinacy bounds for the sticky information model with a backward-looking rule

	Appendix I. Online Appendices
	I.1. Frequency Domain Representation of Discrete Time Series
	I.2. AR(2) example of scaling in the z domain
	I.3. Additional examples of determinacy in the frequency domain
	I.4. Alternative derivation of frequency domain sticky information




